
تعداد نشریات | 13 |
تعداد شمارهها | 631 |
تعداد مقالات | 6,584 |
تعداد مشاهده مقاله | 8,926,507 |
تعداد دریافت فایل اصل مقاله | 8,456,805 |
بررسی ترکیب و فراوانی درشت بی مهرگان کفزی استخرهای پرورش میگو مجتمع گمیشان-جنوب شرقی دریای خزر | ||
مجله بهره برداری و پرورش آبزیان | ||
دوره 13، شماره 4، دی 1403، صفحه 119-130 اصل مقاله (894.79 K) | ||
نوع مقاله: مقاله کامل علمی - پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/japu.2023.21102.1748 | ||
نویسندگان | ||
عبدالعظیم فاضل* 1؛ فاطمه عباسی2؛ عباسعلی آقایی مقدم3؛ طاهر پورصوفی4؛ بهروز منصوری4؛ بهروز قره وی4 | ||
1نویسنده مسئول، استادیار مؤسسه تحقیقات علوم شیلاتی، مرکز تحقیقات ذخایر آبزیان آبهای داخلی، استان گلستان، گرگان، ایران. | ||
2دانشآموخته دکتری تولید و بهرهبرداری آبزیان، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران. | ||
3استادیار مؤسسه تحقیقات علوم شیلاتی، مرکز تحقیقات ذخایر آبزیان آبهای داخلی، استان گلستان، گرگان، ایران. | ||
4کارشناس پژوهشی، مؤسسه تحقیقات علوم شیلاتی، مرکز تحقیقات ذخایر آبزیان آبهای داخلی، استان گلستان، گرگان، ایران. | ||
چکیده | ||
این مطالعه به جهت تعیین ترکیب و فراوانی بزرگ بی مهرگان کفزی استخرهای پرورش میگو منطقه گمیشان استان گلستان انجام گرفت. در این تحقیق نمونه برداری با استفاده از نمونه بردار رسوب و بنتوز (اکمن گرب) در 5 زمان شامل اواسط تیرماه، اواخر تیرماه، اواسط مردادماه، شهریورماه و مهرماه صورت گرفت.در آزمایشگاه نمونه های از یک غربال 500 میکرومتری گذرانده سپس با لوپ و میکروسکوپ تمام اورگانیسم ها براساس کلید های موجود شناسایی شدند. شناسایی جوامع ماکروبنتوزی وجود سه گروه اصلی نرم تنان، کرم های حلقوی و بندپایان را به ترتیب با فراوانی 2/94، 07/3 و 73/2 درصد نشان داد. ترکیب و فراوانی گروه های ماکروبنتوزی در ماه های مختلف و بسیار متفاوت بود. بطوریکه بیشترین فراوانی در ماه های مرداد و شهریور مشاهده شد ولی بیشترین تنوع مربوط به تیرماه بود. بین گونه های مورد بررسی بیشترین تعداد مربوط به راسته Littorinimorpha و گونه Pyragohydrobia sp. با فراوانی 71 درصدی از مجموع کل گونه های شمارش شده بیشترین فراوانی را به خود اختصاص داده بود. | ||
کلیدواژهها | ||
بزرگ بی مهرگان کفزی؛ پرورش میگو؛ گمیشان؛ استان گلستان | ||
مراجع | ||
1.FAO. (2020). The State of World Fisheries and Aquaculture (2020). Sustainability in action. Food and Agriculture Organization of the United Nations. Rome. 244p.
2.Chan, F. T., & Briski, E. (2017). An overview of recent research in marine biological invasions. Marine Biology, 164 (6), 121.
3.Froehlich, H. E., Gentry, R. R., & Halpern, B. S. (2018). Global change in marine aquaculture production potential under climate change. Nature ecology & evolution, 2 (11), 1745-1750.
4.Goddard, S., & Delghandi, M. (2020). Importance of the conservation and management of freshwater to aquaculture. Freshwater-Oasis of Life, 35-44.
5.Magondu, E. W., Munguti, J. M., Fulanda, B. M., & Mlewa, C. M. (2021). Productivity in marine shrimp ponds using integrated multi-trophic aquaculture technology. East African Agricultural and Forestry Journal, 85 (1 & 2), 13-13.
6.Tacon, A. G. (1987). The nutrition and feeding of farmed fish and shrimp; a training manual. 1: The essential nutrients.
7.Gamboa-Delgado, J., Rojas-Casas, M. G., Nieto-López, M. G., & Cruz-Suárez, L. E. (2013). Simultaneous estimation of the nutritional contribution of fish meal, soy protein isolate and corn gluten to the growth of Pacific white shrimp (Litopenaeus vannamei) using dual stable isotope analysis. Aquaculture, 380, 33-40.
8.Martinez-Cordova, L. R., Porchas-Cornejo, M. A., Villarreal-Colemnares, H., Calderon-Perez, J. A., & Naranjo-Paramo, J. (1998). Evaluation of three feeding strategies on the culture of white shrimp Penaeus vannamei Boone 1931 in low water exchange ponds. Aquacultural Engineering, 17 (1), 21-28.
9.Rothlisberg, P. C. (1998). Aspects of penaeid biology and ecology of relevance to aquaculture: a review. Aquaculture, 164 (1-4), 49-65.
10.Meadows, P. S., & Campbell, J. I. (2013). An introduction to marine science. Springer Science & Business Media. 285p.
11.Anderson, R. K., Parker, P. L., & Lawrence, A. (1987). A 13C/12C tracer study of the utilization of presented feed by a commercially important shrimp Penaeus vannamei in a pond Growout system 1. Journal of the world aquaculture society, 18 (3), 148-155.
12.Arias, A. H., & Botte, S. E. (Eds.). (2020). Coastal and deep ocean pollution. London: crc Press. 148p.
13.Lavens, P., & Sorgeloos, P. (2000). The history, present status and prospects of the availability of Artemia cysts for aquaculture. Aquaculture, 181 (3-4), 397-403.
14.Deborde, D. D. D., Hernandez, M. B. M., & Magbanua, F. S. (2016). Benthic Macroinvertebrate Community as an Indicator of Stream Health: The Effects of Land Use on Stream Benthic Macroinvertebrates. Science Diliman, 28 (2).
15.Yaghoobi Namini, M., Salar Ali Abadi, M. A., Abdi, R., Valinasab, T., & Zornozabelmonteh, R. (2021). Study of biodiversity and frequency of polychaetes in the southwestern shores of the Caspian Sea. Iranian Scientific Fisheries Journal, 30 (2), 75-91.
16.Oliveira, A., & Callisto, M. (2010). Benthic macroinvertebrates as bioindicators of water quality in an Atlantic forest fragment. Iheringia. Série Zoologia, 100, 291-300.
17.Martins, T. G., Odebrecht, C., Jensen, L. V., D'Oca, M. G., & Wasielesky Jr, W. (2016). The contribution of diatoms to bioflocs lipid content and the performance of juvenile Litopenaeus vannamei (Boone, 1931) in a BFT culture system. Aquaculture Research, 47 (4), 1315-1326.
18.Pulz, O., & Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied microbiology and biotechnology, 65, 635-648.
19.Asaduzzaman, M., Wahab, M. A., Verdegem, M. C. J., Adhikary, R. K., Rahman, S. M. S., Azim, M. E., & Verreth, J. A. J. (2010). Effects of carbohydrate source for maintaining a high C: N ratio and fish driven re-suspension on pond ecology and production in periphyton-based freshwater prawn culture systems. Aquaculture, 301 (1-4), 37-46.
20.Naylor, R. L., Goldburg, R. J., Primavera, J. H., Kautsky, N., Beveridge, M. C., Clay, J., ... & Troell, M. (2000). Effect of aquaculture on world fish supplies. Nature, 405 (6790), 1017-1024.
21.Desrina, J. V., Verdegem, M. C. J., & Vlak, J. M. (2018). Polychaetes as potential risks for shrimp Pathogen transmission. Asian Fisheries Science S, 31, 155-167.
22.Vijayan, K. K., Raj, V. S., Balasubramanian, C. P., Alavandi, S. V., Sekhar, V. T., & Santiago, T. C. (2005). Polychaete worms-a vector for white spot syndrome virus (WSSV). Diseases of Aquatic Organisms, 63 (2-3), 107-111.
23.Haryadi, D., Verreth, J. A., Verdegem, M. C., & Vlak, J. M. (2015). Transmission of white spot syndrome virus (WSSV) from Dendronereis spp. (Peters) (Nereididae) to penaeid shrimp. Journal of fish diseases, 38 (5), 419-428.
24.Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’hara, R. B., ... & Oksanen, M. J. (2013). Package ‘vegan’. Community ecology package, version, 2 (9), 1-295.
25.Shishehchian, F., & Yusoff, F. M. (1999). Composition and abundance of macrobenthos in intensive tropical marine shrimp culture ponds. Journal of the World Aquaculture Society, 30 (1), 128-133.
26.Rahmanian, M., Ghorbani, R., & Haghshenas, A. (2004). Composition andabundance of macrobenthos in Shrimp (Penaeus indicus) culture in Delvar-Bushehr Province. Journal of Agricultural Sciences and Natural Resources, 11 (3), 153-161.
27.Saghali, M., Yahyavi, M., & Yelghi, S. (2012). Macrobenthos density and distribution of farms in the western white shrimp forms (Litopenaeus vannamei) in Golestan Province. Journal of Aquatic animals & fisheries, 2 (8), 29-37. | ||
آمار تعداد مشاهده مقاله: 87 تعداد دریافت فایل اصل مقاله: 53 |