
تعداد نشریات | 13 |
تعداد شمارهها | 623 |
تعداد مقالات | 6,503 |
تعداد مشاهده مقاله | 8,660,342 |
تعداد دریافت فایل اصل مقاله | 8,261,905 |
توسعه آبزیپروری پایدار با استفاده از فنآوری تودهسازی زیستی | ||
مجله بهره برداری و پرورش آبزیان | ||
مقاله 4، دوره 5، شماره 2، تیر 1395، صفحه 45-72 اصل مقاله (323.94 K) | ||
شناسه دیجیتال (DOI): 10.22069/japu.2017.11710.1315 | ||
نویسندگان | ||
محمدحسین خانجانی* 1؛ مرتضی علیزاده2؛ احمد رفیعی پور3 | ||
1فارغ التحصیل. مدرس | ||
2موسسه تحقیقات شیلات | ||
3دانشگاه جیرفت | ||
چکیده | ||
با افزایش جمعیت جهان، صنایع تولید غذا از قبیل آبزیپروری نیاز هست که به خوبی گسترش یابد. یک فنآوری جدید که فنآوری تودهسازی زیستی (بیوفلوک) نامیده میشود، میتواند اهداف آبزی پروری پایدرار را با استفاده از سیستم بدون تعویض آب دنبال کند. فنآوری تودهسازی زیستی از سیستمهای آبزی پروری سازگار با محیط زیست است که بعنوان یک سیستم جایگزین موثر مورد توجه قرار گرفته است، مواد مغذی را بطور پیوسته بازیافت و مجددا آنها را به عنوان غذا در دسترس آبزی قرار میدهد. این فنآوری براساس تنظیم نسبت کربن به نیتروژن برای توسعه جوامع میکروبی و توده زیستی میباشد که سبب شده میکروبها نیتروژن غیرآلی دفع شده را برداشت و پروتئین میکروبی را تولید کنند. این تودههای میکروبی سبب بهبود کیفیت آب میشوند. تعویض محدود آب، به حداقل رساندن پساب خروجی، حفظ کیفیت آب، تامین غذا، کاهش مصرف پروتئین در خوراک، رشد مطلوب، امنیت زیستی و تولید محصول ارگانیک از مزایای این فنآوری میباشد، که در دهه اخیر مورد توجه قرار گرفته است. در این مطالعه مروری معرفی فنآوری تودهساز زیستی بهعنوان یک راهبرد مهم در ارتقاء و توسعه پایدار آبزیپروری کشور و استفاده مفید از منابع آبی، مورد بحث قرار خواهد گرفت. | ||
کلیدواژهها | ||
آبزیپروری؛ پایدار؛ فن آوری؛ توده سازی زیستی | ||
مراجع | ||
1. Asaduzzaman, M., Wahab, M.A., Verdegem, M.C.J., Huque, S., Salam, M.A., and Azim, M.E. 2008. C/N ratio control and substrate addition for periphyton development jointly enhance Freshwater prawn Macrobrachium rosenbergii production in ponds. Aquaculture. 280: 117-123. 2. Avnimelech, Y. 1999. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture. 176: 227–235. 3. Avnimelech, Y. 2007. Feeding with microbial flocs by tilapia in minimal discharge bioflocs technology ponds. Aquaculture. 264: 140-147. 4. Avnimelech, Y. 2009. Biofloc Technology: A Practical Guide Book. World Aquaculture Society, Baton Rouge, Louisiana, USA. 182p. Avnimelech, Y. 2012. Biofloc Technology: A Practical Guide Book, 2nd Edition. The World Aquaculture Society, Baton Rouge, Louisiana, United States. 272p. 5. Avnimelech, Y., and Kochba, M. 2009. Evaluation of nitrogen uptake and excretion by tilapia in biofloc tanks, using N-15 tracing. Aquaculture. 287: 163–168. 6. Ballester, E.L.C., Abreu, P.C., Cavalli, R.O., Emerenciano, M., Abreu, L., and Wasielesky, W.Jr. 2010. Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system. Aquaculture Nutrition. 16: 163-172. 7. Boyd, C.E., and Tucker, C.S. 2009. Pond aquaculture water quality management, Springer international editor, 700p. 8. Colt, J. 2006. Water quality requirements for reuse systems. Aquacultural Engineering. 34(3): 143–156. 9. Crab, R., Chielens, B., Wille, M., Bossier, P., and Verstraete, W. 2010. The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquaculture Research. 41: 559-567. 10.Crab, R., Defoirdt, T., Bossier, P., and Verstraete, W. 2012. Biofloc technology in aquaculture: beneficial effects and future challenges. Aquaculture. 356–357: 351–356. 11.Craig, S., and Helfrich, L.A. 2002. Understanding fish nutrition, feeds and feeding (Publication 420–256). Virginia Cooperative Extension, Yorktown (Virginia). 4p. 12.De Schryver, P., Crab, R., Defoirdt, T., Boon, N., and Verstraete, W. 2008. The basics of bioflocs technology: the added value for aquaculture. Aquaculture. 277: 125–137. 13.Decamp, O., Cody, J., Conquest, L., Delanoy, G., and Tacon, A.G.J. 2003. Effect of salinity on natural community and production of Litopenaeus vannamei (Boone) within experimental zero-water exchange culture systems. Aquaculture Research. 34: 345-355. 14.Ebeling, J.M., Timmons, M.B., and Bisogni, J.J. 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic control of ammonia-nitrogen in aquaculture production systems. Aquaculture. 257: 346– 358. 15.Emerenciano, M., Ballester, E.L.C., Cavalli, R.O., and Wasielesky, W. 2012. Biofloc technology application as a food source in a limited water exchange nursery system for Pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquaculture Research. 43: 447–457. 16.Emerenciano, M., Ballester, E.L.C., Cavalli, R.O., and Wasielesky, W. 2011. Effect of biofloc technology (BFT) on the early postlarval stage of Pink shrimp Farfantepenaeus paulensis: growth performance, floc composition and salinity stress tolerance. Aquaculture International. 19: 891-901. 17.Emerenciano, M., Cuzon, G., Arévalo, M., Miquelajauregui, M.M., and Gaxiola, G. 2013. Effect of short-term fresh food supplementation on reproductive performance, biochemical composition and fatty acid profile of Litopenaeus vannamei (Boone) reared under biofloc conditions. Aquaculture International. 21: 987–1007. 18.Gao, L., Shan, H.W., Zhang, T.W., Bao, W.Z., and Ma, S.J. 2012. Effects of carbohydrate addition on Litopenaeus vannamei intensive culture in a zerowater exchange system. Aquaculture. 343: 89-96. 19.Garatun-Tjeldsto, O., Ottera, H., Julshamn, K., Austreng, E. 2006. Food ingestion in juvenile cod estimated by inert lanthanide markers- effects of food particle size. Ices Journal of Marine Science. 63(2): 311–319. 20.Hargreaves, J.A. 2006. Photosynthetic suspended-growth systems in aquaculture. Aquacultural Engineering. 34: 344–363. 21.Hargreaves, J.A. 2013. Biofloc production system for aquaculture. Southern Regional Aquaculture Center Publication No, 4503. 22.In-Kwon, J. 2012. Biofloc as disease control. International Water Congress, Busan, Korea. 23.Izquierdo, M., Forster, I., Divakaran, S., Conquest, L., Decamp, O., and Tacon, A., 2006. Effect of green and clear water and lipid source on survival, growth and biochemical composition of Pacific white shrimp Litopenaeus vannamei. Aquaculture Nutrition. 12: 192–202. 24.Jiang, S. 2010. Aquaculture, capture fisheries, and wild fish stocks. Resource Energy Economics. 32: 65–77. 25.Ju, Z.Y., Forster, I., Conquest, L., and Dominy, W. 2008a. Enhanced growth effects on shrimp (Litopenaeus vannamei) from inclusion of whole shrimp floc or floc fractions to a formulated diet. Aquaculture Nutrition. 14: 533–543. 26.Ju, Z.Y., Forster, I., Conquest, L., Dominy, W., Kuo, W.C., and Horgen, F.D., 2008b. Determination of microbial community structures of shrimp floc cultures by biomarkers and analysis of floc amino acid profiles. Aquaculture Research. 39: 118–133. 27.Kang'ombe, J., Likongwe, J.S., Eda, H., and Mtimuni, J.P. 2007. Effect of varying dietary energy level on feed intake, feed conversion, whole-body composition and growth of Malawian tilapia, Oreochromis shiranus-Boulenger. Aquaculture Research. 38(4): 373–380. 28.Khanjani, M.H., Alizadeh, M., Sajjadi M.M., and Sourinejad, I. 2015. Effects of different carbon sources on water quality, growth performance and survival of Western white shrimp (Litopenaeus vannamei Boone, 1931) in zero-water exchange system. Iranian Scientific Fisheries Journal. 24(3): 77-91. (In Persian) 29.Khanjani, M.H., Alizadeh, M., Sajjadi, M.M., and Sourinejad, I. 2015. Effect of different feeding levels on water quality, growth performance and survival of western white shrimp (litopenaeus vannamei boone, 1931) post larvae with application of biofloc technology. Iranian Scientific Fisheries Journal. 24(2): 13-28. (In Persian) 30.Khanjani, M.H., Sajjadi, M.M., Alizadeh, M., and Sourinejad, I. 2016. Nursery performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultivated in a biofloc system: the effect of adding different carbon sources. Aquaculture Research. 1–11, doi: 10.1111/are.12985. 31.Khanjani, M.H., Sajjadi, M.M., Alizadeh, M., and Sourinejad, I. 2016. Study on nursery growth performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) under different feeding levels in zero water exchange system. Iranian Journal of Fisheries Sciences. 15(4): 1465-1484. 32.Kuhn, D.D., and Lawrence, A. 2012. Ex-situ biofloc technology. In: Avnimelech, Y., editor. Biofloc technology- a practical guide book, 2nd ed., The World Aquaculture Society, Baton Rouge, Louisiana, USA. Pp: 217-230. 33.Kuhn, D.D., Boardman, G.D., Lawrence, A.L., Marsh, L., Flick, G.J. 2009. Microbial floc meals as a replacement ingredient for fish meal and soybean protein in shrimp feed. Aquaculture. 296: 51–57. 34.Kuhn, D.D., Lawrence, A.L., Boardman, G.D., Patnaik, S., Marsh, L., and Flick, G.J. 2010. Evaluation of two types of biofloc derived from biological treatment of fish effluent as feed ingredients for Pacific white shrimp, Litopenaeus vannamei. Aquaculture. 303: 28–33. 35.Kumar, M., and Lin, J.G. 2010. Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removal strategies and issues. Journal of Hazardous Materials. 178: 1–9. 36.Lin, S., Mai, K., and Tan, B. 2007. Effects of exogenous enzyme supplementation in diets on growth and feed utilization in tilapia, Oreochromis niloticus×O. aureus. Aquaculture Research. 38: 1645–1653. 37.Maicá, P.F., Borba, M.R., and Wasielesky, W.Jr. 2012. Effect of low salinity on microbial floc composition and performance of Litopenaeus vannamei (Boone) juveniles reared in a zero-water-exchange super-intensive system. Aquaculture Research. 43: 361–370. 38.Martins, A.M.P., Heijnen, J.J., Van Loosdrecht, M.C.M. 2003. Effect of dissolved oxygen concentration on sludge settleability. Applied Microbiology and Biotechnology. 62: 586–593. 39.McIntosh, R.P. 2000. Changing paradigms in shrimp farming. IV. Low protein feeds and feeding strategies. The Global Aquaculture Advocate. 44–50 (April). 40.Naylor, R.L., Goldburg, R.J., Primavera, J.H., Kautsky, N., Beveridge, M.C.M., Clay, J., Folke, C., Lubchenco, J., Mooney, H., and Troell, M. 2000. Effect of aquaculture on world fish supplies. Nature. 405: 1017 -1024. 41.Péron, G., Mittaine, J.F., and Le Gallic, B. 2010. Where do fishmeal and fish oil products come from? An analysis of the conversion ratios in the global fishmeal industry. Marine Policy. 34: 815–820. 42.Piedrahita, R.H. 2003. Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation. Aquaculture. 226: 35–44. 43.Rahman, M.M., Nagelkerke, L.A.J., Verdegem, M.C.J., Wahab, M.A., and Verreth, J.A.J. 2008. Relationships among water quality, food resources, fish diet and fish growth in polyculture ponds: a multivariate approach. Aquaculture. 275: 108–115. 44.Rakocy, J.E., Bailey, D.S., Thoman, E.S., and Shultz, R.C. 2004. Intensive tank culture of tilapia with a suspended, bacterial based treatment process: new dimensions in farmed tilapia. In: Bolivar, R., Mair, G., Fitzsimmons, K., editors. Proceedings of the Sixth International Symposium on Tilapia in Aquaculture. Pp: 584–596. 45.Ray, A. 2012. Biofloc technology for super-intensive shrimp culture. In: Avnimelech, Y., editor. Biofloc technology- a practical guide book, 2nd ed., The World Aquaculture Society, Baton Rouge, Louisiana, USA. Pp: 167-188. 46.Ray, J.A., Lewis, B.L., Browdy, C.L., and Leffler, J.W. 2010. Suspended solids removal to improve shrimp (Litopenaeus vannamei) production and an evaluation of a plant-based feed in minimal-exchange, super intensive culture systems. Aquaculture. 299: 89-98. 47.Sohier, L. 1986. Microbiologie appliquée à l’aquaculture marine intensive. Pp: 119. Thèse Doctorat d’Etat, Université Aix-Marseille II Marseille, France. 48.Tacon, A.G.J., Cody, J.J., Conquest, L.D., Divakaran, S., Forster, I.P., and Decamp, O.E. 2002. Effect of culture system on the nutrition and growth performance of Pacific white shrimp Litopenaeus vannamei (Boone) fed different diets. Aquaculture Nutrition. 8: 121–139. 49.Timmons, M.B., Holder, J.L., and Ebeling, J.M. 2006. Application of microbead biological filters. Aquacultural Engineering. 34: 332–343. 50.Valle, B.C.S., Dantas, Jr., Silva, J.F.X., Bezerra, R.S., Correia, E.S., Peixoto, S.R.M., and Soares, R.B. 2015. Replacement of fish meal by fish protein hydrolysate and biofloc in diets of Litopenaeus vannamei postlarvae. Aquaculture Nutrition. 21: 105–112. 51.Wasielesky, W., Atwood, H., Stokes, A., and Browdy, C.L. 2006. Effect of natural production in a zero exchange suspended microbial floc based superintensive culture system for white shrimp Litopenaeus vannamei. Aquaculture. 258: 396-403. 52.Wasielesky, W.Jr., Froes, C., Fóes, G., Krummenauer, D., Lara, G., and Poersch, L., 2013. Nursery of Litopenaeus vannamei reared in a biofloc system: the effect of stocking densities and compensatory growth. Journal of Shellfish Research. 32(3): 799-806. 53.Wilen, B.M., Nielsen, J.L., Keiding, K., Nielsen, P.H. 2000. Influence of microbial activity on the stability of activated sludge flocs. Colloids and Surfaces Biointerfaces. 18(2): 145–156. 54.Xu, W.J., and Pan, L.Q. 2012. Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed. Aquaculture. 356: 147–152. 55.Xu, W.J., and Pan, L.Q. 2013. Dietary protein level and C/N ratio manipulation in zero‐exchange culture of Litopenaeus vannamei: Evaluation of inorganic nitrogen control, biofloc composition and shrimp performance. Aquaculture Research. 45: 1842–1851. 56.Xu, W.J., Pan, L.Q., Sun, X.H., and Huang, J. 2013. Effects of bioflocs on water quality, and survival, growth and digestive enzyme activities of Litopenaeus vannamei (Boone) in zero-water exchange culture tanks. Aquaculture Research. 44: 1093-1102. | ||
آمار تعداد مشاهده مقاله: 645 تعداد دریافت فایل اصل مقاله: 897 |