Le, V.-G., Nguyen, M.-K., Lin, C., Nguyen, H.-L., Nguyen, T. Q. H., Hue, N. K., Truong, Q.-M., Chang, S. W., Nguyen, X. H., & Nguyen, D. D. (2024). Review on personal protective equipment: Emerging concerns in micro (nano) plastic pollution and strategies for addressing environmental challenges. Environmental Research, 119345.
- Walker, T. R., & Fequet, L. (2023). Current trends of unsustainable plastic production and micro (nano) plastic pollution. TrAC Trends in Analytical Chemistry, 160, 116984. doi.org/10.1016/j.trac.2023.116984.
- Lamichhane, G., Acharya, A., Marahatha, R., Modi, B., Paudel, R., Adhikari, A., Raut, B., Aryal, S., & Parajuli, N. (2023). Microplastics in environment: global concern, challenges, and controlling measures. International Journal of Environmental Science and Technology, 20(4), 4673-4694. doi.org/10.1007/s13762-022-04261-1.
- Nguyen, M.-K., Rakib, M. R. J., Lin, C., Hung, N. T. Q., Le, V.-G., Nguyen, H.-L., Malafaia, G., & Idris, A. M. (2023). A comprehensive review on ecological effects of microplastic pollution: An interaction with pollutants in the ecosystems and future perspectives. TrAC Trends in Analytical Chemistry, 117294. doi.org/10.1016/j.trac.2023.117294.
- Wright, S. L., & Kelly, F. J. (2017). Plastic and Human Health: A Micro Issue? Environmental Science & Technology, 51(12), 6634–6647. doi.org/10.1021/acs.est.7b00423.
- Carpenter, E. J., & Smith Jr, K. L. (1972). Plastics on the Sargasso Sea surface. Science, 175(4027), 1240-1241.
- Okeke, E. S., Okoye, C. O., Atakpa, E. O., Ita, R. E., Nyaruaba, R., Mgbechidinma, C. L., & Akan, O. D. (2022). Microplastics in agroecosystems-impacts on ecosystem functions and food chain. Resources, Conservation and Recycling, 177, 105961. doi.org/10.1016/j.resconrec.2021.105961.
- Tran, H. T., Lin, C., Bui, X.-T., Nguyen, M. K., Cao, N. D. T., Mukhtar, H., Hoang, H. G., Varjani, S., Ngo, H. H., & Nghiem, L. D. (2022). Phthalates in the environment: characteristics, fate and transport, and advanced wastewater treatment technologies. Bioresource Technology, 344, 126249. doi.org/10.1016/j.biortech.2021.126249.
- de Souza Machado, A. A., Lau, C. W., Till, J., Kloas, W., Lehmann, A., Becker, R., & Rillig, M. C. (2018). Impacts of microplastics on the soil biophysical environment. Environmental Science & Technology, 52(17), 9656-9665. doi.org/10.1021/acs.est.8b02212.
- Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., Narayan, R., & Law, K. L. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768–771. DOI: 10.1126/science.1260352.
- Ky, T. N., Van-Re, L. M., & Zhu, J. (2023). Occurrence, distribution, and characteristics of microplastics in agricultural soil around a solid waste treatment center in southeast China. Journal of Soils and Sediments, 23(2), 936–946. doi.org/10.1007/s11368-022-03341-6
- Arkatkar, A., Arutchelvi, J., Bhaduri, S., Uppara, P. V., & Doble, M. (2009). Degradation of unpretreated and thermally pretreated polypropylene by soil consortia. International Biodeterioration & Biodegradation, 63(8), 1069–1074. doi.org/10.1016/j.ibiod.2009.09.001.
- Ali, M. I., Ahmed, S., & Khan, F. (2014). Isolation and molecular characterization of polyvinyl chloride (PVC) plastic degrading fungal isolates. Journal of Basic Microbiology, 54(1), 18–27. doi.org/10.1002/jobm.201200477.
- Santana, J. H. P., Souza, A. A. U., & D’Avila, M. A. (2012). Biodegradation of a polylactic acid/polyvinyl chloride blend in soil. Polymer Degradation and Stability, 97(9), 1360–1365. doi.org/10.1016/j.polymdegradstab.2012.05.006.
- Otake, Y., Kobayashi, T., Asabe, H., Murakami, N., & Ono, K. (1995). Biodegradation of low-density polyethylene, polystyrene, polyvinyl chloride, and urea formaldehyde resin buried under soil for over 32 years. Journal of Applied Polymer Science, 56(13), 1789–1796. doi.org/10.1002/app.1995.070561309.
- Hoang, V.-H., Nguyen, M.-K., Hoang, T.-D., Ha, M. C., Huyen, N. T. T., Bui, V. K. H., Pham, M.-T., Nguyen, C.-M., Chang, S. W., & Nguyen, D. D. (2024). Sources, environmental fate, and impacts of microplastic contamination in agricultural soils: A comprehensive review. Science of The Total Environment, 950, 175276. doi.org/10.1016/j.scitotenv.2024.175276IFIS Collections.
- Zhu YongGuan, Z. Y., Zhu Dong, Z. D., Xu Tong, X. T., & Ma Jun, M. J. (2019). Impacts of (micro) plastics on soil ecosystem: progress and perspective. Journal of Agro-Environment Science, 38(1), 1–6. (in Chinese).
- Büks, F., & Kaupenjohann, M. (2020). Global concentrations of microplastic in soils, a review. Soil Discussions, 2020, 1-26. doi.org/10.5194/soil-6-649-2020, 2020.
- Liu, Y., Shao, H., Liu, J., Cao, R., Shang, E., Liu, S., & Li, Y. (2021). Transport and transformation of microplastics and nanoplastics in the soil environment: A critical review. Soil use and management, 37(2), 224-242. Doi. org. 10.1111/sum.12709.
- Li, H.-Z., Zhu, D., Lindhardt, J. H., Lin, S.-M., Ke, X., & Cui, L. (2021). Long-term fertilization history alters effects of microplastics on soil properties, microbial communities, and functions in diverse farmland ecosystem. Environmental Science & Technology, 55(8), 4658-4668. doi.org/10.1021/acs.est.0c04849.
- Nizzetto, L., Bussi, G., Futter, M. N., Butterfield, D., & Whitehead, P. G. (2016). A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments. Environmental Science: Processes & Impacts, 18(8), 1050-1059. doi.org/10.1039/C6EM00206D.
- Huang, Y., Liu, Q., Jia, W., Yan, C., & Wang, J. (2019). Microplastic pollution: A threat to ecosystem functioning and services. Critical Reviews in Environmental Science and Technology, 50(22), 2211–2247. Doi. org. 10.1080/10643389.2019.1694821.
- Huang, W., Song, B., Liang, J., Niu, Q., Zeng, G., Shen, M., Deng, J., Luo, Y., Wen, X., & Zhang, Y. (2021). Microplastics and associated contaminants in the aquatic environment: A review on their ecotoxicological effects, trophic transfer, and potential impacts to human health. Journal of Hazardous Materials, 405, 124187. doi.org/10.1016/j.jhazmat.2020.124187.
- Zhang, G., & Liu, Y. (2018). The distribution of microplastics in soil aggregate fractions in southwestern China. Science of the Total Environment, 642, 12-20. 22. Doi. Org. 10.1016/j.scitotenv.2018.06.004
- Jin, T., Tang, J., Lyu, H., Wang, L., Gillmore, A. B., & Schaeffer, S. M. (2022). Activities of microplastics (MPs) in agricultural soil: a review of MPs pollution from the perspective of agricultural ecosystems. Journal of Agricultural and Food Chemistry, 70(14), 4182-4201. Doi. org. 10.1021/acs.jafc.1c07849.
- Chukwuemeka, I. S., Li, G., Mo, Y., & Jacques, K. J. (2024). Impacts of microplastics and urbanization on soil health: an urgent concern for sustainable development. Green Analytical Chemistry, 100095. Doi. org. 10.1016/j.greeac.2024.100095 (Early access).
- Song, Y. K., Hong, S. H., Jang, M., Han, G. M., Jung, S. W., & Shim, W. J. (2017). Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type. Environmental Science & Technology, 51(8), 4368-4376. Doi. org. 10.1021/acs.est.6b06155.
- Bolan, N. S., Kirkham, M. B., Halsband, C., Nugegoda, D., & Ok, Y. S. (2020). Particulate plastics in terrestrial and aquatic environments. CRC Press.
- Bolan, N., & Bradney, L. (2019). Particulate plastics in soils. Chemistry in Australia, 18-20.
- Gaylor, M. O., Harvey, E., & Hale, R. C. (2013). Polybrominated diphenyl ether (PBDE) accumulation by earthworms (Eisenia fetida) exposed to biosolids-, polyurethane foam microparticle-, and penta-BDE-amended soils. Environmental Science & Technology, 47(23), 13831-13839. Doi. org. 10.1021/es403640a.
- Oliviero, M., Tato, T., Schiavo, S., Fernández, V., Manzo, S., & Beiras, R. (2019). Leachates of micronized plastic toys provoke embryotoxic effects upon sea urchin Paracentrotus lividus. Environmental Pollution, 247, 706-715. Doi. org. 10.1016/j.envpol.2019.02.037.
- Wei, W., Huang, Q.-S., Sun, J., Wang, J.-Y., Wu, S.-L., & Ni, B.-J. (2019). Polyvinyl chloride microplastics affect methane production from the anaerobic digestion of waste activated sludge through leaching toxic bisphenol-A. Environmental Science & Technology, 53(5), 2509-2517. Doi. org. 10.1021/acs.est.8b06043.
- Yan, M., Nie, H., Xu, K., He, Y., Hu, Y., Huang, Y., & Wang, J. (2020). Microplastics in the surface sediments from the Beijiang River littoral zone: Composition, abundance, and source identification. Science of The Total Environment, 711, 134979. Doi. org. 10.1016/j.scitotenv.2019.134979.
- Kumar, M., Kumar, M., Pandey, A., & Thakur, I. S. (2019). Genomic analysis of carbon dioxide sequestering bacterium for exopolysaccharides production. Scientific reports, 9(1), 4270. Doi. org. 10.1038/s41598-019-40833-x.
- Kumar, R. (2020). HDPE microplastics reduce nutrient uptake in tea plants. Tea Science and Research, 23, 89-100.
- Zhang, S., Wang, J., Liu, X., Qu, F., Wang, X., Wang, X., Li, Y., & Sun, Y. (2019). Microplastics in the environment: A review of analytical methods, distribution, and biological effects. TrAC Trends in Analytical Chemistry, 111, 62-72. Doi. org. 10.1016/j.trac.2018.12.002.
- 37. Avio, C. G., Gorbi, S., Milan, M., Benedetti, M., Fattorini, D., d'Errico, G., Pauletto, M., Bargelloni, L., & Regoli, F. (2015). Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environmental Pollution, 198, 211-222. org. 10.1016/j.envpol.2014.07.026.
- Chua, E. M., Shimeta, J., Nugegoda, D., Morrison, P. D., & Clarke, B. O. (2014). Assimilation of polybrominated diphenyl ethers from microplastics by the marine amphipod, Allorchestes compressa. Environmental Science & Technology, 48(14), 8127-8134. Doi. org. 10.1021/es5013852.
- He, D., Luo, Y., Lu, S., Liu, M., Song, Y., & Lei, L. (2018). Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC Trends in Analytical Chemistry, 109, 163-172. Doi. org. 10.1016/j.trac.2018.07.029.
- Karbalaei, S., Hanachi, P., Walker, T. R., & Cole, M. (2018). Occurrence, sources, human health impacts and mitigation of microplastic pollution. Environmental science and pollution research, 25, 36046-36063. Doi. org. 10.1007/s11356-018-3508-7.
- Paul, A., Wander, L., Becker, R., Goedecke, C., & Braun, U. (2019). High-throughput NIR spectroscopic (NIRS) detection of microplastics in soil. Environmental science and pollution research, 26, 7364-7374. Doi. org. 10.1007/s11356-018-2590-1.
- Rillig, M. C., Ingraffia, R., & de Souza Machado, A. A. (2017). Microplastic incorporation into soil in agroecosystems. Frontiers in plant science, 8, 1805. Doi. org. 10.3389/fpls.2017.01805.
- Liu, C., Li, J., Zhang, Y., Wang, L., Deng, J., Gao, Y., Yu, L., Zhang, J., & Sun, H. (2019). Widespread distribution of PET and PC microplastics in dust in urban China and their estimated human exposure. Environment international, 128, 116-124. Doi. org. 10.1016/j.envint.2019.05.021.
- Maaß, S., Daphi, D., Lehmann, A., & Rillig, M. C. (2017). Transport of microplastics by two collembolan species. Environmental Pollution, 225, 456-459. Doi. org. 10.1016/j.envpol.2017.03.009.
- Waldschläger, K., Lechthaler, S., Stauch, G., & Schüttrumpf, H. (2020). The way of microplastic through the environment–Application of the source-pathway-receptor model. Science of the Total Environment, 713, 136584. Doi. org. 10.1016/j.scitotenv.2020.136584.
- Wang, T., Wang, L., Chen, Q., Kalogerakis, N., Ji, R., & Ma, Y. (2020). Interactions between microplastics and organic pollutants: Effects on toxicity, bioaccumulation, degradation, and transport. Science of the Total Environment, 748, 142427. Doi. org. 10.1016/j.scitotenv.2020.142427.
- Zhang, L., Xie, Y., Liu, J., Zhong, S., Qian, Y., & Gao, P. (2020). An overlooked entry pathway of microplastics into agricultural soils from application of sludge-based fertilizers. Environmental Science & Technology, 54(7), 4248-4255. Doi. org. 10.1021/acs.est.9b07905.
- Li, J., Zhang, K., & Zhang, H. (2018). Environmental Pollution, 237, 460–467.
- Shen, M., Zeng, Z., Wen, X., Ren, X., Zeng, G., Zhang, Y., & Tang, W. (2019). Presence of microplastics in agricultural soils and their potential threat to food safety. Soil Systems, 3(2), 33. Doi. org. 10.3390/soilsystems3020033.
- Liu, H., Yang, X., Liu, G., Liang, C., Xue, S., Chen, H., Ritsema, C. J., & Geissen, V. (2017). Response of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere, 185, 907-917. Doi. org. 10.1016/j.chemosphere.2017.07.064.
- Zhou, Q., Zhang, H., Fu, C., Zhou, Y., Dai, Z., Li, Y., Tu, C., & Luo, Y. (2020). The distribution and morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow Sea. Geoderma, 361, 114097. Doi. org. 10.1016/j.geoderma.2019.114097.
- Li, J., Song, Y., & Cai, Y. (2020). Focus topics on microplastics in soil: analytical methods, occurrence, transport, and ecological risks. Environmental Pollution, 257, 113570. Doi. org. 10.1016/j.envpol.2019.113570.
- Gabet, E. J., Reichman, O., & Seabloom, E. W. (2003). The effects of bioturbation on soil processes and sediment transport. Annual Review of Earth and Planetary Sciences, 31(1), 249-273. Doi. org. 10.1146/annurev.earth.31.100901.141314.
- Huerta Lwanga, E., Gertsen, H., Gooren, H., Peters, P., Salánki, T., Van Der Ploeg, M., Besseling, E., Koelmans, A. A., & Geissen, V. (2016). Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environmental Science & Technology, 50(5), 2685-2691. Doi. org. 10.1021/acs.est.5b05478.
- Liu, X., Zhang, Q., & Zhang, W. (2021). Impact of microplastics on soil enzyme activities and microbial communities: A review. Environmental Pollution, 274, 115921. Doi. org. 10.1016/j.envpol.2020.115921.
- Chae, Y., & An, Y.-J. (2018). Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. Environmental Pollution, 240, 387-395. Doi. org. 10.1016/j.envpol.2018.05.008.
- Tian, L., Chen, Q., Jiang, W., Wang, L., Xie, H., Kalogerakis, N., Ma, Y., & Ji, R. (2019). A carbon-14 radiotracer-based study on the phototransformation of polystyrene nanoplastics in water versus in air. Environmental Science: Nano, 6(9), 2907-2917. Doi. org. 10.1039/C9EN00551J.
- Lambert, S., & Wagner, M. (2016). Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere, 145, 265-268. Doi. org. 10.1016/j.chemosphere.2015.12.064.
- González-Pleiter, M., Tamayo-Belda, M., Pulido-Reyes, G., Amariei, G., Leganés, F., Rosal, R., & Fernández-Piñas, F. (2021). Secondary nanoplastics released from a biodegradable plastic: A new source of contamination. Environmental Science: Nano, 8(6), 1570–1580. Doi. org. 10.1039/D0EN01273C.
- Gigault, J., Halle, A. T., Baudrimont, M., Pascal, P.-Y., Gauffre, F., Phi, T.-L., ... & Ter Halle, A. (2018). Current opinion: What is a nanoplastic?. Environmental Pollution, 235, 1030–1034. Doi. org. 10.1016/j.envpol.2017.12.036.
- Xiang, Y., Song, M., Liu, W., Zhang, Y., & Yang, X. (2022). Surface degradation and microplastic release from agricultural plastic films under UV radiation and mechanical abrasion. Journal of Hazardous Materials, 436, 129137. Doi. org. 10.1016/j.jhazmat.2022.129137.
- Zhang, Y., Wang, J., Zhou, B., Sun, R., & Liu, W. (2023). Secondary nanoplastics in agricultural soils: Formation mechanisms and environmental impacts. Environmental Sciences Europe, 35(1), 1–12. Doi. org. 10.1186/s12302-023-00736-1.
- Hernandez, E., Gauthier, J., & Lopez, P. (2022). Agricultural plastic degradation: Impact of UV and mechanical stress on microplastic formation. Environmental Pollution, 280, 116967. Doi. org. 10.1016/j.envpol.2021.116967.
- Li, B., Song, W., Cheng, Y., Zhang, K., Tian, H., Du, Z., Wang, J., Wang, J., Zhang, W., & Zhu, L. (2021). Ecotoxicological effects of different size ranges of industrial-grade polyethylene and polypropylene microplastics on earthworms Eisenia fetida. Science of the Total Environment, 783, 147007. Doi. org. 10.1016/j.scitotenv.2021.147007.
- Tian, L., Jinjin, C., Ji, R., Ma, Y., & Yu, X. (2022). Microplastics in agricultural soils: sources, effects, and their fate. Current Opinion in Environmental Science & Health, 25, 100311. Doi. org. 10.1016/j.coesh.2021.100311.
- Hurley, R. R., & Nizzetto, L. (2018). Fate and occurrence of micro (nano) plastics in soils: Knowledge gaps and possible risks. Current Opinion in Environmental Science & Health, 1, 6-11. Doi. org. 10.1016/j.coesh.2018.03.001.
- Liu, E., He, W., & Yan, C. (2014). ‘White revolution’to ‘white pollution’—agricultural plastic film mulch in China. Environmental Research Letters, 9(9), 091001. Doi. org. 10.1088/1748-9326/9/9/091001.
- Wang, F., Wang, Q., Adams, A.A., Sun, Y., & Zhang, S. (2022). Effects of microplastics on soil properties: Current knowledge and future perspectives. Journal of Hazardous Materials, 424, 127531. Doi. org. 10.1016/j.jhazmat.2021.127531.
- Dong, Y., Gao, M., Qiu, W., & Song, Z. (2021). Effect of microplastics and arsenic on nutrients and microorganisms in rice rhizosphere soil. Ecotoxicology and Environmental Safety, 211, 111899. Doi. org. 10.1016/j.ecoenv.2021.111899.
- Rillig, M. C., Leifheit, E., & Lehmann, J. (2021). Microplastic effects on carbon cycling processes in soils. PLoS Biology, 19(3), e3001130. Doi. org. 10.1371/journal.pbio.3001130.
- Wang, C., Zhao, J., & Xing, B. (2021). Environmental source, fate, and toxicity of microplastics. Journal of Hazardous Materials, 407, 124357. Doi. org. 10.1016/j.jhazmat.2020.124357.
- Liu, M., Lu, S., Song, Y., Lei, L., Hu, J., Lv, W., Zhou, W., Cao, C., Shi, H., & Yang, X. (2018). Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environmental Pollution, 242, 855-862. Doi. org. 10.1016/j.envpol.2018.07.051.
- Gao, D., Li, X.-y., & Liu, H.-t. (2020). Source, occurrence, migration and potential environmental risk of microplastics in sewage sludge and during sludge amendment to soil. Science of the Total Environment, 742, 140355. Doi. org. 10.1016/j.scitotenv.2020.140355.
- Chen, G., Feng, Q., & Wang, J. (2020). Mini-review of microplastics in the atmosphere and their risks to humans. Science of the Total Environment, 703, 135504. Doi. org. 10.1016/j.scitotenv.2019.135504.
- Feng, X., Wang, Q., Sun, Y., Zhang, S., & Wang, F. (2022). Microplastics change soil properties, heavy metal availability and bacterial community in a Pb-Zn-contaminated soil. Journal of Hazardous Materials, 424, 127364. Doi. org. 10.1016/j.jhazmat.2021.127364.
- Li, J., Zhang, K., & Zhang, X. (2021). Microplastic and nanoplastic contamination in agricultural soils: Formation, fate, and ecological impacts. Environmental Pollution, 277, 116801. Doi. org. 10.1016/j.envpol.2021.116801.
- Lozano, Y. M., & Rillig, M. C. (2020). Effects of microplastic fibers and drought on plant communities. Environmental Science & Technology, 54(10), 6166-6173. Doi. org. 10.1021/acs.est.0c01051.
- Yuan, J., Ma, J., Sun, Y., Zhou, T., Zhao, Y., & Yu, F. (2020). Microbial degradation and other environmental aspects of microplastics/plastics. Science of the Total Environment, 715, 136968. Doi. org. 10.1016/j.scitotenv.2020.136968.
- Hodson, M. E., Duffus-Hodson, C. A., Clark, A., Prendergast-Miller, M. T., & Thorpe, K. L. (2017). Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates. Environmental Science & Technology, 51(8), 4714-4721. Doi. org. 10.1021/acs.est.7b00635.
- Bhagat, J., Zang, L., Nishimura, N., & Shimada, Y. (2020). Zebrafish: An emerging model to study microplastic and nanoplastic toxicity. Science of the Total Environment, 728, 138707. Doi. org. 10.1016/j.scitotenv.2020.138707.
- de Souza Machado, A. A., Lau, C. W., Kloas, W., Bergmann, J., Bachelier, J. B., Faltin, E., Becker, R., Görlich, A. S., & Rillig, M. C. (2019). Microplastics can change soil properties and affect plant performance. Environmental Science & Technology, 53(10), 6044-6052. Doi. org. 10.1021/acs.est.9b01339.
- Fang, C., Sobhani, Z., Zhang, X., Gibson, C. T., Tang, Y., & Naidu, R. (2020). Identification and visualisation of microplastics/nanoplastics by Raman imaging (ii): smaller than the diffraction limit of laser? Water research, 183, 116046. Doi. org. 10.1016/j.watres.2020.116046.
- Chang, J., Fang, W., Liang, J., Zhang, P., Zhang, G., Zhang, H., Zhang, Y., & Wang, Q. (2022). A critical review on interaction of microplastics with organic contaminants in soil and their ecological risks on soil organisms. Chemosphere, 306, 135573. Doi. org. 10.1016/j.chemosphere.2022.135573.
- Hüffer, T., Metzelder, F., Sigmund, G., Slawek, S., Schmidt, T. C., & Hofmann, T. (2019). Polyethylene microplastics influence the transport of organic contaminants in soil. Science of the Total Environment, 657, 242-247. Doi. org. 10.1016/j.scitotenv.2019.03.047.
- Ma, X., Zhou, X., Zhao, M., Deng, W., Cao, Y., Wu, J., & Zhou, J. (2022). Polypropylene microplastics alter the cadmium adsorption capacity on different soil solid fractions. Frontiers of Environmental Science & Engineering, 16, 1-12. Doi. org. 10.1007/s11783-022-1570-3.
- Wang, J., Tan, Z., Peng, J., Qiu, Q., & Li, M. (2016). The behaviors of microplastics in the marine environment. Marine Environmental Research, 113, 7-17. Doi. org. 10.1016/j.marenvres.2015.12.010.
- Jiang, P., Zhao, S., Zhu, L., & Li, D. (2018). Microplastic-associated bacterial assemblages in the intertidal zone of the Yangtze Estuary. Science of the Total Environment, 624, 48-54. Doi. org. 10.1016/j.scitotenv.2017.12.155.
- Lozano, Y. M., Lehnert, T., Linck, L. T., Lehmann, A., & Rillig, M. C. (2021). Microplastic shape, polymer type, and concentration affect soil properties and plant biomass. Frontiers in plant science, 12, 616645. Doi. org. 10.3389/fpls.2021.616645.
- Yang, L., Zhang, Y., Kang, S., Wang, Z., & Wu, C. (2021). Microplastics in soil: A review on methods, occurrence, sources, and potential risk. Science of the Total Environment, 780, 146546. Doi. org. 10.1016/j.scitotenv.2021.146546.
- Kim, S. W., Waldman, W. R., Kim, T. Y., & Rillig, M. C. (2020). Effects of different microplastics on nematodes in the soil environment: tracking the extractable additives using an ecotoxicological approach. Environmental science & technology, 54(21), 13868-13878. Doi. org. 10.1021/acs.est.0c04671.
- Cheng, Y., Song, W., Tian, H., Zhang, K., Li, B., Du, Z., ... & Zhu, L. (2021). The effects of high-density polyethylene and polypropylene microplastics on the soil and earthworm Metaphire guillelmi gut microbiota. Chemosphere, 267, 129219. Doi. org. 10.1016/j.chemosphere.2021.129219.
- Rillig, M. C., Lehmann, A., de Souza Machado, A. A., & Yang, G. (2019). Microplastic effects on plants. New phytologist, 223(3), 1066-1070. Doi. org. 10.1111/nph.15794.
- Xiao, X., Liu, X., Mei, T., Xu, M., Lu, Z., Dai, H., Pi, F., & Wang, J. (2022). Estimation of contamination level in microplastic-exposed crayfish by laser confocal micro-Raman imaging. Food Chemistry, 397, 133844. Doi. org. 10.1016/j.foodchem.2022.133844.
- Machado, A. A. S., Lau, C. W., Kloas, W., Bergmann, J., Bachelier, J. B., Faltin, E., Becker, R., Görlich, A. S., & Rillig, M. C. (2019). Microplastics as an emerging threat to terrestrial ecosystems. Global Change Biology, 25(2), 744–755. Doi. org. 10.1111/gcb.14515.
- Huang, Y., Zhao, Y., Wang, J., Zhang, M., Jia, W., & Qin, X. (2019). LDPE microplastic films alter microbial community composition and enzymatic activities in soil. Environmental Pollution, 254, 112983. Doi. org. 10.1016/j.envpol.2019.112983.
- Leifheit, E. F., & Rillig, M. C. (2021). Mycorrhizal interactions with microplastics in soil. Soil Ecology Letters, 3(1), 10–15. Doi. org. 10.1007/s42832-020-0060-4.
- Fei, Y., Huang, S., Zhang, H., Tong, Y., Wen, D., Xia, X., Wang, H., Luo, Y., & Barceló, D. (2020). Response of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil. Science of the Total Environment, 707, 135634. Doi. org. 10.1016/j.scitotenv.2019.135634.
- Rong, L., Zhao, L., Zhao, L., Cheng, Z., Yao, Y., Yuan, C., Wang, L., & Sun, H. (2021). LDPE microplastics affect soil microbial communities and nitrogen cycling. Science of the Total Environment, 773, 145640. Doi. org. 10.1016/j.scitotenv.2021.145640.
- Zhao, Y., Liu, X., & Li, L. (2023). Effects of microplastic contamination on microbial communities and ecosystem functions in terrestrial environments. Environmental Pollution, 305, 119255. Doi. org. 10.1016/j.envpol.2022.119255.
- Judy, T. A., Koster, L., & Wang, P. (2019). Effects of microplastics on microbial diversity and function in soils. Soil Biology and Biochemistry, 127, 89-99. Doi. org. 10.1016/j.soilbio.2018.08.023.
- Rillig, M. C., de Souza Machado, A. A., Lehmann, A., & Klümper, U. (2018). Evolutionary implications of microplastics for soil biota. Environmental Chemistry, 16(1), 3-7. Doi. org. 10.1071/EN18091.
- Sun, Y., Duan, C., Cao, N., Ding, C., Huang, Y., & Wang, J. (2022). Biodegradable and conventional microplastics exhibit distinct microbiome, functionality, and metabolome changes in soil. Journal of Hazardous Materials, 424, 127282. Doi. org. 10.1016/j.jhazmat.2021.127282.
- Sun, Y., Li, X., Cao, N., Duan, C., Ding, C., Huang, Y., & Wang, J. (2022). Biodegradable microplastics enhance soil microbial network complexity and ecological stochasticity. Journal of Hazardous Materials, 439, 129610. Doi. org. 10.1016/j.jhazmat.2022.129610.
- Shi, J., Wang, Z., Peng, Y., Fan, Z., Zhang, Z., Wang, X., Zhu, K., Shang, J., & Wang, J. (2023). Effects of Microplastics on Soil Carbon Mineralization: The Crucial Role of Oxygen Dynamics and Electron Transfer. Environmental Science & Technology, 57(36), 13588-13600. Doi. org. 10.1021/acs.est.3c03244.
- Iqbal, B., Zhao, T., Yin, W., Zhao, X., Xie, Q., Khan, K. Y., Zhao, X., Nazar, M., Li, G., & Du, D. (2023). Impacts of soil microplastics on crops: A review. Applied Soil Ecology, 181, 104680. Doi. org. 10.1016/j.apsoil.2022.104680.
- Li, J., Yu, S., Yu, Y., & Xu, M. (2022). Effects of microplastics on higher plants: a review. Bulletin of Environmental Contamination and Toxicology, 109(2), 241-265. Doi. org. 10.1007/s00128-022-03516-4.
- Singh, N., Abdullah, M. M., Ma, X., & Sharma, V. K. (2023). Microplastics and nanoplastics in the soil-plant nexus: Sources, uptake, and toxicity. Critical Reviews in Environmental Science and Technology, 53(18), 1613-1642. Doi. org. 10.1080/10643389.2022.2060302.
- Gao, B., Yao, H., Li, Y., & Zhu, Y. (2021). Microplastic addition alters the microbial community structure and stimulates soil carbon dioxide emissions in vegetable‐growing soil. Environmental Toxicology and Chemistry, 40(2), 352-365. Doi. org. 10.1002/etc.5020.
- Ng, E. L., Huerta Lwanga, E., Eldridge, S. M., Johnston, P., Hu, H. W., Geissen, V., & Chen, D. (2020). An overview of microplastic and nanoplastic pollution in agroecosystems. Science of The Total Environment, 701, 134442. Doi. org. 10.1016/j.scitotenv.2019.134442.
- Shr
uti, V., Jonathan, M., Rodriguez-Espinosa, P., & Rodríguez-González, F. (2019). Microplastics in freshwater sediments of atoyac river basin, puebla city, Mexico. Science of the Total Environment, 654, 154-163. Doi. org. 10.1016/j.scitotenv.2018.12.147.
- Zhang, Y., Li, X., Xiao, M., Feng, Z., Yu, Y., & Yao, H. (2022). Effects of microplastics on soil carbon dioxide emissions and the microbial functional genes involved in organic carbon decomposition in agricultural soil. Science of the Total Environment, 806, 150714. Doi. org. 10.1016/j.scitotenv.2021.150714.
- Dong, Y., Gao, M., Song, Z., & Qiu, W. (2020). Microplastic particles increase arsenic toxicity to rice seedlings. Environmental Pollution, 259, 113892. Doi. org. 10.1016/j.envpol.2020.113892.
- Ceccanti, C., Davini, A., Piccolo, E. L., Lauria, G., Rossi, V., Castiglione, M. R., ... & Landi, M. (2024). Polyethylene microplastics alter root functionality and affect strawberry plant physiology and fruit quality traits. Journal of Hazardous Materials, 470, 134164. DOi. org. 10.1016/j.jhazmat.2024.134164.
- Li, Z., 114. Li, Q., Li, R., Zhao, Y., Geng, J., & Wang, G. (2020). Physiological responses of lettuce (Lactuca sativa L.) to microplastic pollution. Environmental Science and Pollution Research, 27, 30306-30314. DOi. org. 10.1007/s11356-020-09335-6.
114.Zhang, S., Gao, W., Cai, K., Liu, T., & Wang, X. (2022). Effects of microplastics on growth and physiological characteristics of tobacco (Nicotiana tabacum L.). Agronomy, 12(11), 2692. DOi. org. 10.3390/agronomy12112692.
115.Wang, Y., Xiang, L., Wang, F., Wang, Z., Bian, Y., Gu, C., ... & Xing, B. (2022). Positively charged microplastics induce strong lettuce stress responses from physiological, transcriptomic, and metabolomic perspectives. Environmental Science & Technology, 56(23), 16907-16918. DOi. org. 10.1021/acs.est.2c06014.
- Liu, X., Wang, Z., Shi, G., Gao, Y., Zhang, H., & Liu, K. (2025). Effects of microplastics and salt single or combined stresses on growth and physiological responses of maize seedlings. Physiologia Plantarum, 177(1), e70106. DOi. org. 10.1111/ppl.70106.
- Colzi, I., Renna, L., Bianchi, E., Castellani, M. B., Coppi, A., Pignattelli, S., ... & Gonnelli, C. (2022). Impact of microplastics on growth, photosynthesis and essential elements in Cucurbita pepo L. Journal of Hazardous Materials, 423, 127238. DOi. org. 10.1016/j.jhazmat.2021.127238.
- Zhuang, H., Liu, X., Ma, H., Li, R., Liu, B., Lin, Z., & Li, Z. (2023). Growth and physiological–biochemical characteristics of cucumber (Cucumis sativus L.) in the presence of different microplastics. Arabian Journal of Geosciences, 16(3), 194. DOi. org. 10.1007/s12517-023-11293-5.
- Zhang, Y., Tian, X., Huang, P., Yu, X., Xiang, Q., Zhang, L., ... & Gu, Y. (2023). Biochemical and transcriptomic responses of buckwheat to polyethylene microplastics. Science of the Total Environment, 899, 165587. DOi. org. 10.1016/j.scitotenv.2023.165587.
- Ma, J., Aqeel, M., Khalid, N., Nazir, A., Alzuaibr, F. M., Al-Mushhin, A. A., ... & Noman, A. (2022). Effects of microplastics on growth and metabolism of rice (Oryza sativa L.). Chemosphere, 307, 135749. DOi. org. 0.1016/j.chemosphere.2022.135749.
- Zhang, K., Gao, N., Li, Y., Dou, S., Liu, Z., Chen, Y., ... & Zhang, H. (2023). Responses of maize (Zea mays L.) seedlings growth and physiological traits triggered by polyvinyl chloride microplastics is dominated by soil available nitrogen. Ecotoxicology and Environmental Safety, 252, 114618. DOi. org. 10.1016/j.ecoenv.2023.114618.
- Ren, X., Tang, J., Wang, L., & Liu, Q. (2021). Microplastics in soil-plant system: effects of nano/microplastics on plant photosynthesis, rhizosphere microbes and soil properties in soil with different residues. Plant and Soil, 462, 561-576. DOi. org. 10.1007/s11104-021-04919-8.
- Fan, W. B., Jiang, S. H., Wang, Q., Li, W. J., & Wang, X. H. (2025). EFFECTS OF MICROPLASTICS ON THE GROWTH AND PHYSIOLOGICAL CHARACTERISTICS OF MULBERRY. Applied Ecology & Environmental Research, 23(1). DOi. org. 10.15666/aeer/2301.
- Li, S., Wang, T., Guo, J., Dong, Y., Wang, Z., Gong, L., & Li, X. (2021). Polystyrene microplastics disturb the redox homeostasis, carbohydrate metabolism and phytohormone regulatory network in barley. Journal of Hazardous Materials, 415, 125614. DOi. org. 10.1016/j.jhazmat.2021.125614.
- Shen, L., Zhang, P., Lin, Y., Huang, X., Zhang, S., Li, Z., ... & Liu, H. (2023). Polystyrene microplastic attenuated the toxic effects of florfenicol on rice (Oryza sativa L.) seedlings in hydroponics: From the perspective of oxidative response, phototoxicity and molecular metabolism. Journal of Hazardous Materials, 459, 132176. DOi. org. 10.1016/j.jhazmat.2023.131531.
- Li, Z., Li, R., Li, Q., Zhou, J., & Wang, G. (2020). Physiological response of cucumber (Cucumis sativus L.) leaves to polystyrene nanoplastics pollution. Chemosphere, 255, 127041. DOi. org. 10.1016/j.chemosphere.2020.127041.
- Yang, C., & Gao, X. (2022). Impact of microplastics from polyethylene and biodegradable mulch films on rice (Oryza sativa L.). Science of the Total Environment, 828, 154579. DOi. org. 10.1016/j.scitotenv.2022.154579.
- Zhuang, H., Li, Z., Wang, M., Liu, B., Chu, Y., & Lin, Z. (2024). Effects of microplastics and combined pollution of polystyrene and di-n-octyl phthalate on photosynthesis of cucumber (Cucumis sativus L.). Science of the Total Environment, 947, 174426. DOi. org. 10.1016/j.scitotenv.2024.174426.
- Wu, C., Su, W., Yang, Z., Li, D., Gu, L., Chen, X., ... & Ma, X. (2025). Responses of cotton growth, physiology, and soil properties to polyethylene microplastics in arid areas. Environmental Geochemistry and Health, 47(4), 110. DOi. org. 10.1007/s10653-024-01980-9.
- Fang, X. Z., Fang, S. Q., Ding, Y., Ma, J. W., Ye, Z. Q., Liu, D., & Zhao, K. L. (2024). Microplastic exposure inhibits nitrate uptake and assimilation in wheat plants. Environmental Pollution, 360, 124626. DOi. org. 10.1016/j.envpol.2024.124626.
- Kumar, M., Sun, Y., Rathour, R., Pandey, A., Thakur, I. S., & Tsang, D. C. (2020). Algae as potential feedstock for the production of biofuels and value-added products: Opportunities and challenges. Science of the Total Environment, 716, 137116. Doi. org. 10.1016/j.jhazmat.2022.128523.
- Laughlin, R., Rütting, T., Müller, C., Watson, C., & Stevens, R. (2009). Effect of acetate on soil respiration, N2O emissions and gross N transformations related to fungi and bacteria in a grassland soil. Applied Soil Ecology, 42(1), 25-30. Doi. org. 10.1016/j.jhazmat.2022.128826.
- Ng, E. L., Lin, S. Y., Dungan, A. M., Colwell, J. M., Ede, S., Lwanga, E. H., Meng, K., Geissen, V., Blackall, L. L., & Chen, D. (2021). Microplastic pollution alters forest soil microbiome. Journal of Hazardous Materials, 409, 124606. Doi. org. 10.3389/fenvs.2021.675803.
- Guo, Q., Xiao, M., & Zhang, G. (2021). The persistent impacts of polyester microfibers on soil bio-physical properties following thermal treatment. Journal of Hazardous Materials, 420, 126671. Doi. org. 10.3390/toxics12070499.
- Iqbal, S., Xu, J., Allen, S. D., Khan, S., Nadir, S., Arif, M. S., & Yasmeen, T. (2020). Unraveling consequences of soil micro-and nano-plastic pollution on soil-plant system: Implications for nitrogen (N) cycling and soil microbial activity. Chemosphere, 260, 127578. Doi. org. 10.1016/j.fmre.2022.07.009.
- Firestone, M. K., & Davidson, E. A. (1989). Microbiological basis of NO and N₂O production and consumption in soil. In M. O. Andreae & D. S. Schimel (Eds.), Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere (pp. 7–21). Wiley. Doi. org. 10.1016/j.jhazmat.2021.125954.
- Groffman, P. M., Altabet, M. A., Böhlke, J. K., Butterbach-Bahl, K., David, M. B., Firestone, M. K., ... & Voytek, M. A. (2006). Methods for measuring denitrification: Diverse approaches to a difficult problem. Ecological Applications, 16(6), 2091–2122. Doi. org. 10.1016/j.scitotenv.2022.151960.
- Schlesinger, W. H. (2009). Biogeochemistry: An analysis of global change (3rd ed.). Academic Press. Doi. org. 10.1016/j.jhazmat.2022.129287.
- Bandopadhyay, S., Martin-Closas, L., Pelacho, A. M., & DeBruyn, J. M. (2018). Biodegradable plastic mulch films: Impacts on soil microbial communities and ecosystem functions. Frontiers in Microbiology, 9, 819. Doi. org. 10.1016/j.envpol.2021.117733.
- Carr, S. A., Liu, J., & Tesoro, A. G. (2016). Transport and fate of microplastic particles in wastewater treatment plants. Water Research, 91, 174–182. Doi. org. 10.1016/j.chemosphere.2023.138504.
- Rillig, M. C., Lehmann, A., Ryo, M., & Bergmann, J. (2019). Shaping up: Toward considering the shape and form of pollutants. Environmental Science & Technology, 53(14), 7925–7926. Doi. org. 10.1007/s10924-010-0188-x.
- Tao, F., Huang, Y., Hungate, B. A., Manzoni, S., Frey, S. D., Schmidt, M. W., Reichstein, M., Carvalhais, N., Ciais, P., & Jiang, L. (2023). Microbial carbon use efficiency promotes global soil carbon storage. Nature, 618(7967), 981-985. Doi. org. 10.1016/j.jenvman.2017.05.096.
- Yao, Y., Lili, W., Shufen, P., Gang, L., Hongmei, L., Weiming, X., Lingxuan, G., Jianning, Z., Guilong, Z., & Dianlin, Y. (2022). Can microplastics mediate soil properties, plant growth and carbon/nitrogen turnover in the terrestrial ecosystem? Ecosystem Health and Sustainability, 8(1), 2133638. Doi. org. 10.1080/20964129.2022.2133638.
- Chen, C., Yin, G., Li, Q., Gu, Y., Sun, D., An, S., Liang, X., Li, X., Zheng, Y., & Hou, L. (2023). Effects of microplastics on denitrification and associated N2O emission in estuarine and coastal sediments: insights from interactions between sulfate reducers and denitrifiers. Water research, 245, 120590. Doi. org. 10.1016/j.apsoil.2014.02.008.
- Shi, J., Wang, J., Lv, J., Wang, Z., Peng, Y., & Wang, X. (2022). Microplastic presence significantly alters soil nitrogen transformation and decreases nitrogen bioavailability under contrasting temperatures. Journal of environmental management, 317, 115473. Doi. org. 10.1021/acssuschemeng.7b04051.
- Gao, B., Li, Y., Zheng, N., Liu, C., Ren, H., & Yao, H. (2022). Interactive effects of microplastics, biochar, and earthworms on CO2 and N2O emissions and microbial functional genes in vegetable-growing soil. Environmental Research, 213, 113728. Doi. org. 10.1016/j.scitotenv.2019.07.209.
- Wu, X., Chen, X., Jiang, R., You, J., & Ouyang, G. (2022). New insights into the photo-degraded polystyrene microplastic: Effect on the release of volatile organic compounds. Journal of Hazardous Materials, 431, 128523. Doi. org. 10.1016/j.scitotenv.2016.02.031.
- Wang, Q., Feng, X., Liu, Y., Cui, W., Sun, Y., Zhang, S., & Wang, F. (2022). Effects of microplastics and carbon nanotubes on soil geochemical properties and bacterial communities. Journal of Hazardous Materials, 433, 128826. Doi. org. 10.1007/s12665-012-2112-2.
- Zhao, T., Lozano, Y. M., & Rillig, M. C. (2021). Microplastics increase soil pH and decrease microbial activities as a function of microplastic shape, polymer type, and exposure time. Frontiers in Environmental Science, 9, 675803. Doi. org. 10.1016/j.matchemphys.2015.12.055.
- Liu, J., Yu, Z., Song, N., Zong, H., Wang, F., Guo, R., & Li, S. (2024). Plant Cadmium Toxicity and Biomarkers Are Differentially Modulated by Degradable and Nondegradable Microplastics in Soil. Toxics, 12(7). Doi. org. 10.1016/j.fbio.2018.05.004.
- Zhang, E., Chen, Y., Li, Y., Sun, K., Yang, Y., Gao, B., & Xing, B. (2024). The photo-redox of chromium regulated by microplastics (MPs) and MPs-derived dissolved organic matter (MPs-DOM) and the CO2 emission of MPs-DOM. Fundamental Research, 4(6), 1576-1585. Doi. org. 10.1002/ieam.1904.
- Zhao, Z.-Y., Wang, P.-Y., Wang, Y.-B., Zhou, R., Koskei, K., Munyasya, A. N., Liu, S.-T., Wang, W., Su, Y.-Z., & Xiong, Y.-C. (2021). Fate of plastic film residues in agro-ecosystem and its effects on aggregate-associated soil carbon and nitrogen stocks. Journal of Hazardous Materials, 416, 125954. Doi. org. 10.1021/es0010498.
- Chen, M., Zhao, X., Wu, D., Peng, L., Fan, C., Zhang, W., Li, Q., & Ge, C. (2022). Addition of biodegradable microplastics alters the quantity and chemodiversity of dissolved organic matter in latosol. Science of the Total Environment, 816, 151960. Doi. org. 10.1016/j.marpolbul.2009.06.014.
- Wu, X., Liu, P., Zhao, X., Wang, J., Teng, M., & Gao, S. (2022). Critical effect of biodegradation on long-term microplastic weathering in sediment environments: a systematic review. Journal of Hazardous Materials, 437, 129287. Doi. org. 10.1016/j.chemosphere.2011.11.032.
- Yu, H., Zhang, Z., Zhang, Y., Song, Q., Fan, P., Xi, B., & Tan, W. (2021). Effects of microplastics on soil organic carbon and greenhouse gas emissions in the context of straw incorporation: A comparison with different types of soil. Environmental Pollution, 288, 117733. Doi. org. 10.1021/acs.est.6b04496.
- Liu, R., Liang, J., Yang, Y., Jiang, H., & Tian, X. (2023). Effect of polylactic acid microplastics on soil properties, soil microbials and plant growth. Chemosphere, 329, 138504. Doi.org/10.1016/j.chemosphere.2023.138504.
- Briassoulis, D., & Dejean, C. (2010). Critical review of norms and standards for biodegradable agricultural plastics part Ι. Biodegradation in soil. Journal of Polymers and the Environment, 18, 384-400. doi.org/10.1007/s10924-010-0168-1.
- Moreno, M. M., González-Mora, S., Villena, J., Campos, J. A., & Moreno, C. (2017). Deterioration pattern of six biodegradable, potentially low-environmental impact mulches in field conditions. Journal of environmental management, 200, 490-501. doi.org/10.1016/j.jenvman.2017.06.007.
- Yang, Y. (2021). Polystyrene microplastics induce lipid peroxidation and electrolyte leakage in cabbage. Plant Toxicology, 67, 112-123.
- Li, C., Moore-Kucera, J., Lee, J., Corbin, A., Brodhagen, M., Miles, C., & Inglis, D. (2014). Effects of biodegradable mulch on soil quality. Applied Soil Ecology, 79, 59-69. doi.org/10.1016/j.apsoil.2014.02.012.
- European Bioplastics. (2023). Bioplastics Market Development Update 2023. In collaboration with the Nova-Institute.
- European Bioplastics. (2022). Bioplastics Market Development Update 2022 – Global Production Capacities to Grow by 4% in 2023. Nova-Institute.
- Kubowicz, S., & Booth, A. M. (2017). Biodegradability of plastics: challenges and misconceptions. In: ACS Publications. doi.org/10.1021/acs.est.7b04051.
- Wang, J., Liu, X., Li, Y., Powell, T., Wang, X., Wang, G., & Zhang, P. (2019). Microplastics as contaminants in the soil environment: A mini-review. Science of the Total Environment, 691, 848-857. doi.org/10.1016/j.scitotenv.2019.07.209.
- Steinmetz, Z., Wollmann, C., Schaefer, M., Buchmann, C., David, J., Tröger, J., Muñoz, K., Frör, O., & Schaumann, G. E. (2016). Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Science of the Total Environment, 550, 690-705. doi.org/10.1016/j.scitotenv.2016.01.153.
- Chen, Y., Wu, C., Zhang, H., Lin, Q., Hong, Y., & Luo, Y. (2013). Empirical estimation of pollution load and contamination levels of phthalate esters in agricultural soils from plastic film mulching in China. Environmental earth sciences, 70, 239-247. doi.org/10.1007/s12665-012-2119-8.
- Luo, Y., Liu, L., Qiao, W., Liu, F., Zhang, Y., Tan, W., & Qiu, G. (2016). Facile crystal-structure-controlled synthesis of iron oxides for adsorbents and anode materials of lithium batteries. Materials Chemistry and Physics, 170, 239-245. doi.org/10.1016/j.matchemphys.2015.12.044.
- Suderman, N., Isa, M., & Sarbon, N. (2018). The effect of plasticizers on the functional properties of biodegradable gelatin-based film: A review. Food bioscience, 24, 111-119. doi.org/10.1016/j.fbio.2018.06.006.
- Hartmann, N. B., Rist, S., Bodin, J., Jensen, L. H., Schmidt, S. N., Mayer, P., Meibom, A., & Baun, A. (2017). Microplastics as vectors for environmental contaminants: Exploring sorption, desorption, and transfer to biota. Integrated environmental assessment and management, 13(3), 488-493. doi.org/10.1002/ieam.1904.
- Mato, Y., Isobe, T., Takada, H., Kanehiro, H., Ohtake, C., & Kaminuma, T. (2001). Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environmental Science & Technology, 35(2), 318-324. doi.org/10.1021/es0010498.
- Ogata, Y., Takada, H., Mizukawa, K., Hirai, H., Iwasa, S., Endo, S., Mato, Y., Saha, M., Okuda, K., & Nakashima, A. (2009). International Pellet Watch: Global monitoring of persistent organic pollutants (POPs) in coastal waters. 1. Initial phase data on PCBs, DDTs, and HCHs. Marine pollution bulletin, 58(10), 1437-1446. doi.org/10.1016/j.marpolbul.2009.06.014.
- Van, A., Rochman, C. M., Flores, E. M., Hill, K. L., Vargas, E., Vargas, S. A., & Hoh, E. (2012). Persistent organic pollutants in plastic marine debris found on beaches in San Diego, California. Chemosphere, 86(3), 258-263. doi.org/10.1016/j.chemosphere.2011.09.039.
- Green, D. S., Boots, B., O’Connor, N. E., & Thompson, R. (2017). Microplastics affect the ecological functioning of an important biogenic habitat. Environmental science & technology, 51(1), 68-77. doi.org/10.1021/acs.est.6b04496.
|