- Nyaupane, S., Ram Prasad, M., Toyanath, J., & Ranjana, D. (2023). Plant-based agro-biodiversity solutions for reducing agrochemical use and effects. In M. C. Ogwu & S. Chibueze Izah (Eds.), Sustainable Development and Biodiversity 34, (pp. 545–563). Springer Singapore.
- Thierfelder, C., & Blessing, M. (2022). Short-term yield gains or long-term sustainability? – A synthesis of conservation agriculture long-term experiments in Southern Africa. Agriculture, Ecosystems and Environment, 326, 107812.
- Saudy, H. S., El-Bially, M. E., & Hashem, F. A. (2023). The changes in yield response factor, water use efficiency, and physiology of sunflower owing to ascorbic and citric acids application under mild deficit irrigation. Gesunde Pflanzen, 75(4), 899–909.
- Saudy, H. S., El-Bially, M. E., El-Metwally, I., & Shahin, M. (2021). Physio-biochemical and agronomic response of ascorbic acid-treated sunflower (Helianthus annuus) grown at different sowing dates and under various irrigation regimes. Gesunde Pflanzen, 73(2), 169–179.
- Iqbal, J., Cheema, Z. A., & An, M. (2007). Intercropping of field crops in cotton for the management of purple nutsedge (Cyperus rotundus L.). Plant and Soil, 300(1–2), 163–171.
- Scavo, A., Fontanazza, S., & Restuccia, A. (2022). The role of cover crops in improving soil fertility and plant nutritional status in temperate climates: A review. Agronomy for Sustainable Development, 42(5), 93.
- Virili, A., Marusig, D., Delle Vedove, G., & Marraccini, E. (2024). Buckwheat (Fagopyrum esculentum Moench.) as an emerging companion crop in annual cropping systems: A systematic review. Italian Journal of Agronomy, 19(1),1-7.
- Huda, M. N., Lu, S., Jahan, T., Ding, M., Jha, R., Zhang, K., Georgiev, M. I., Park, S. U., & Zhou, M. (2021). Treasure from garden: Bioactive compounds of buckwheat. Food Chemistry, 335, 127653.
- Biszczak, W., Różyło, K., & Kraska, P. (2020). Yielding parameters, nutritional value of soybean seed, and weed infestation in relay-strip intercropping system with buckwheat. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 70(8), 640–647
- Beshir, B., Amsalu, B., Dagmawit, T., Selamawit, K., Teamir, M., & Bezawit, Y. (2019). Cowpea production, marketing, and utilization in Ethiopia. Ethiopian Institute of Agricultural Research
- Das, A., Patel, D. P., Ghosh, P. K., & Munda, G. C. (2018). Cereal-legume cropping system in Indian Himalayan region for food and environmental sustainability. In M. L. Pareek (Ed.), Legumes for Soil Health and Sustainable Management (pp. 33–76). Springer Singapore.
- Namatsheve, T., Cardinael, R., Corbeels, M., & Chikowo, R. (2020). Productivity and biological N2-fixation in cereal-cowpea intercropping systems in sub-Saharan Africa: A review. Agronomy for Sustainable Development, 40(4), 30.
- Adigun, J. A., Osipitan, A., Lagoke, S. T., Adeyemi, R. O., & Afolami, S. O. (2014). Growth and yield performance of cowpea (Vigna unguiculata (L.) Walp) as influenced by row-spacing and period of weed interference in South-West Nigeria. Journal of Agricultural Science, 6(4), 188.
- Nadeem, M., Li, J., Yahya, M., Sher, A., Ma, C., Wang, X., & Qiu, L. (2019). Research progress and perspective on drought stress in legumes: A review. International Journal of Molecular Sciences, 20(10), 2541.
- Rahman, T., Zhang, G., Li, X., & Niaz, A. (2017). Water use efficiency and evapotranspiration in maize-soybean relay strip intercrop systems as affected by planting geometries. PLOS ONE, 12(6), e0178332.
- Landschoot, S., Taverniers, J., De Ketelaere, B., & Steppe, K. (2024). Cereal-legume intercropping: A smart review using topic modelling. Frontiers in Plant Science, 14.
- Gabr, M. E. (2022). Modelling net irrigation water requirements using FAO-CROPWAT 8.0 and CLIMWAT 2.0: A case study of Tina Plain and East South ElKantara regions, North Sinai, Egypt. Archives of Agronomy and Soil Science, 68(10), 1322–1337.
- Chauhdary, J. N., Bakhsh, A., Engel, B. A., & Ragab, R. (2019). Improving corn production by adopting efficient fertigation practices: Experimental and modeling approach. Agricultural Water Management, 221, 449–461.
- Allen, R., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop water requirements. Food and Agriculture Organization of the United Nations.
- Yan, H., Shi, X., Yu, J., & Liao, Q. (2015). Study of evapotranspiration and evaporation beneath the canopy in a buckwheat field. Theoretical and Applied Climatology, 122(3–4), 721–728.
- Willey, R. W. (1979). Intercropping: Its importance and research needs. Field Crop Abstracts, 1, 1–10.
- Yogendra, N. D., Khar, S., Gurjar, R., & Satish, K. (2024). Livelihood enhancement and resource use efficiency under lemongrass intercropping with food crops. Ecological Frontiers, 44(2), 266–274.
- Porte, A., Bellon, S., Brunsell, N., & Nkouka, K. (2022). Does a soybean intercrop increase nodule number, N uptake, and grain yield of the followed main crop soybean? Agriculture, 12(4), 467.
- Falquet, B., Heilig, R., & Ramseier, R. (2015). Weed suppression by common buckwheat: A review. Environment Control in Biology, 53(1), 1–6.
- Xiang, D. B., Tang, X., Liu, Y., & Lin, J. (2016). Effect of planting density on lodging-related morphology, lodging rate, and yield of Tartary buckwheat (Fagopyrum tataricum). Plant Production Science, 19(4), 479–488.
- Rangappa, K., Namsa, N. D., Thakur, V. S., & Kalita, P. (2023). Year-round growth potential and moisture stress tolerance of buckwheat (Fagopyrum esculentum L.) under fragile hill ecosystems of the Eastern Himalayas (India). Frontiers in Sustainable Food Systems, 7.
- Aubert, L., Konrádová, D., Barris, S., & Quinet, M. (2021). Different drought resistance mechanisms between two buckwheat species (Fagopyrum esculentum and Fagopyrum tataricum). Physiologia Plantarum, 172(2), 577–586.
- Uchino, H., Iwama, K., & Yamasaki, S. (2009). Yield losses of soybean and maize by competition with interseeded cover crops and weeds in organic-based cropping systems. Field Crops Research, 113(3), 342–351.
- Zhou, Q., Wang, J., & Han, J. (2023). Increasing planting density can improve the yield of Tartary buckwheat. Frontiers in Plant Science, 14.
- Olorunwa, O. J., Shi, A., & Barickman, T. C. (2021). Varying drought stress induces morpho-physiological changes in cowpea (Vigna unguiculata (L.) genotypes inoculated with Bradyrhizobium japonicum). Plant Stress, 2, 100033.
- Kanda, E. K., Senzanje, A., & Mabhaudhi, T. (2020). Effect of moistube and subsurface drip irrigation on cowpea (Vigna unguiculata (L.) Walp) production in South Africa. Water SA, 46(2 April).
- Namatsheve, T., Cardinael, R., Corbeels, M., & Chikowo, R. (2024). Do intercropping and mineral nitrogen fertilizer affect weed community structures in low-input maize-based cropping systems? Crop Protection, 176, 106486.
- Duke, S. O. (2018). Weed physiology (1st ed.). Reproduction and Ecophysiology Boca Raton: CRC Press.176.
- Kalinova, J., & Vrchotova, N. (2009). Level of catechin, myricetin, quercetin, and isoquercitrin in buckwheat (Fagopyrum esculentum Moench), changes of their levels during vegetation and their effect on the growth of selected weeds. Journal of Agricultural and Food Chemistry, 57(7), 2719–2725.
- Cheriere, T., Lorin, M., & Corre-Hellou, G. (2020). Species choice and spatial arrangement in soybean-based intercropping: Levers that drive yield and weed control. Field Crops Research, 256, 107923.
- Abdulkareem, B. M., Chen, X., Zhang, Y., & Li, Q. (2024). Enhancing cotton sustainability: Multi-factorial intercropping, irrigation, and weed effects on productivity, quality, and physiology. Heliyon, 10(5), e27135
|