- Enjalbert, J.N., Zheng, S., Johnson, J.J., Mullen, J.L., Byrne, P.F., & McKay, J.K. (2013). Brassicaceae germplasm diversity for agronomic and seed quality traits under drought stress. Industrial Crops and Products, 47, 176–185.
- (2003). World Agriculture: Towards 2015/2030: An FAO perspective. Available at: www.fao.org/docrep/ 005/y4252e/y4252e00.htm.
- Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: the 2012 revision. ESAworking paper 12-03. FAO, Rome.
- Bannayan, M., Lotfabadi, S., Sanjani, S., Mohammadian, A., & Agaalikhani, M. (2011). Effects of precipitation and temperature on cereal yield variability in northeast of Iran. International Journal of Biometeorology, 55, 387- 401.
- (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., & Miller, H.L. (Eds.). Cambridge University Press, Cambridge, United Kingdom/New York, NY, USA.
- Babaeian, I., Najafi Nik, Z., Zabol Abasi, F., Habibi Nokhandan, M., Adab, H., & Malbousi, S. (2008). Assessment of climate change of country in 2010-2039 period using General Circulation Model data of ECHO-G. Geography and Development, 16, 135-152 (In Persian).
- Cohen, I., Zandalinas, S.I., Huck, C., Fritschi, F.B. & Mittler, R. (2021). Meta-analysis of drought and heat stress combination impact on crop yield and yield components. Physiologia Plantarum, 171, 66–76.
- Yang, H., Huntingford, C., Wiltshire, A., Sitch, S., & Mercado, L. (2019). Compensatory climate effects link trends in global runoff to rising atmospheric CO2 concentration. Environmental Research Letters, 14, 124075.
- Hu, Y.N., Liu, Y.J., Tang., H.J. Xu., Y.L., & Jie., P.A.N. (2014). Contribution of drought to potential crop yield reduction in a wheat-maize rotation region in the North China Plain. Journalof Agricultural Science, 13(7), 1509-1519.
- Ludwig, F., & Asseng, S. (2006). Climate change impacts on wheat production in a Mediterranean environment in Western Australia. Agricultural Systems, 90, 159-179.
- Koocheki, A., & Nassiri, M. (2008). Impacts of climate change and CO2 concentration on wheat yield in Iran and adaptation strategies. Iranian Journal of Field Crops Research, 6, 139-153 (In Persian).
- Anwar, M.R., Liu, D.L., Farquharson, R., Macadam, I., Abadi, A., Finlayson, J., Wang, B., & Ramilan, T. (2015). Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia. Agricultural Systems, 132, 133-144.
- Qin, X., Wang, H., He, Y., Li, Z., Gao, Q., Wan, Y., & Parton, W. J. (2018). Simulated adaptation strategies for spring wheat to climate change in a northern high latitude environment by DAYCENT model. European Journal of Agronomy, 95, 45-56.
- Wang, B., Feng, P., Chen, C., Li Liu, D., Waters, C., & Yu, Q. (2019). Designing wheat ideotypes to cope with future changing climate in South-Eastern Australia. Agricultural Systems, 170, 9-18.
- Luo, X., Xia, J., & Yang, H. (2015). Modeling water requirements of major crops and their responses to climate change in the North China Plain. Environmental Earth Sciences, 74, 3531-3541.
- White, J.W., Hoogenboom, G., Kimball, B.A., & Wall, G.W. (2011). Methodologies for simulating impacts of climate change on crop production. Field Crops Research, 124, 357-368.
- Battisti, R., Sentelhas, P.C., Boote, K.J., Câmara, G.M.D.S., Farias, J.R., & Basso, C.J. (2017). Assessment of soybean yield with altered water-related genetic improvement traits under climate change in Southern Brazil. European Journal of Agronomy, 83, 1-14.
- Hatzig, S.V., Schiessl, S., Stahl, A., & Snowdon, R.J. (2015). Characterizing root response phenotypes by neural network analysis. Journal of Experimental Botany, 66, 5617-5624.
- Seleiman, M.F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H.H., & Battaglia, M.L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10, 259.
- Semenov, M.A., Martre, P., & Jamieson, P.D. (2009). Quantifying effects of simple wheat traits on yield in water-limited environments using a modelling approach. Agricultural and Forest Meteorology, 149(6-7), 1095-1104.
- Soltani, A., & Sinclair, T.R. (2012a). Identifying plant traits to increase chickpea yield in water-limited environments. Field Crops Research, 133, 186-196.
- Tao, F., Rötter, R.P., Palosuo, T., Díaz-Ambrona, C.G.H., Mínguez, M.I., Semenov, M.A., Kersebaum, K.C., Nendel, C., Cammarano, D., Hoffmann, H., Ewert, F., Dambreville, A., Martre, P., Rodríguez, L., Ruiz-Ramos, M., Gaiser, T., Höhn, J.G., Salo, T., Ferrise, R., Bindi, M., & Schulman, A.H. (2017). Designing future barley ideotypes using a crop model ensemble. European Journal of Agronomy, 82, 144-162.
- Vadez, V. (2014). Root hydraulics: the forgotten side of roots in drought adaptation. Field Crops Research, 165, 15-24.
- Richards, R.A., Rebetzke, G.J., Condon, A.G., & Van Herwaarden, A.F. (2002). Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Science, 42(1), 111-121.
- Senapati, N., Stratonovitch, P., Paul, M.J. & Semenov, M.A. (2019). Drought tolerance during reproductive development is important for increasing wheat yield potential under climate change in Europe. Journal of Experimental Botany, 70(9), 2549-2560.
- Walid, S., Jose, R.L., & Kevin, P.S. (2021). Transpiration increases under high-temperature stress: Potential mechanisms, trade-offs and prospects for crop resilience in a warming world. Plant Cell Environment, 44, 2102-2116.
- Hossain, S.M., Masle, J., Easton, A., Hunter, M.N., Godwin, I.D., Farquhar, G.D., & Lambrides, C.J. (2020). Genetic variation for leaf carbon isotope discrimination and its association with transpiration efficiency in canola (Brassica napus). Functional Plant Biology, 47(4), 355-367.
- Christopher, J.T., Christopher, M.J., Borrell, A.K., Fletcher, S. & Chenu, K. (2016). Stay-green traits to improve wheat adaptation in well-watered and water-limited environments. Journal of Experimental Botany, 67, 5159-5172.
- Luche, H.D., Da Silva, J.A.G., Da Maia, L.C, & De Oliveira A.C. (2015). Stay green: a potentiality in plant breeding. Ciencia Rural, 45, 1755-1760.
- He, D., Wang, E., Wang, J. & Lilley, J.M. (2017). Genotype× environment× management interactions of canola across China: A simulation study. Agricultural and Forest Meteorology, 247, 424-433.
- Dolferus, R. (2014). To grow or not to grow: a stressful decision for plants. Plant Science, 229, 247–261. 10.1016/j.plantsci.2014.10.002.
- Soltani, A., Alimagham, S.M., Nehbandani, A., Torabi, B., Zeinali, E., Dadrasi, A., Zand, E., Ghassemi, S., Pourshirazi, S., Alasti, O., Hosseini, R.S., Zahed, M., Arabameri, R., Mohammadzadeh, Z., Rahban, S., Kamari, H., Fayazi, H., Mohammadi, S., Keramat, S., Vadez, V., van Ittersum, M.K., & Sinclair, T.R. (2020). SSM-iCrop2: A simple model for diverse crop species over large areas. Agricultural Systems, 182, 102855
- Rahban, S., Torabi, B., Soltani, A., & Zeinali, E. (2021). Using SSM-iCrop model to predict phenology, yield and water productivity of canola (Brassica napus) in Iran condition. Journal of Agroecology, 13(1), 157-177 (In Persian).
- Hoogenboom, G., Porter, C.H., Shelia, V., Boote, K.J., Singh, U., White, J.W., Hunt, L.A., Ogoshi, R., Lizaso, J.I., Koo, J., Asseng, A., Singels, L.P., & Jones, J.W. (2019). Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.7.5 (https://DSSAT.net). DSSAT Foundation, Gainesville, Florida, USA.
- Soltani, A., & Sinclair, T.R. (2012b). Optimizing chickpea phenology to available water under current and future European Journal of Agronomy, 38, 22-31.
- Ruane, A.C., Winter, J.M., McDermid, S.P., & Hudson, N.I. (2015). AgMIP climate data and scenarios for integrated assessment. In Rosenzweig, C., & Hillel, D. (Eds.). Handbook of climate change and agroecosystems: The agricultural model Intercomparison and improvement project (AgMIP) (pp. 45–78). Imperial College Press.
- (2013). Guide for Running AgMIP Climate Scenario Generation Tools with R in Windows. AgMIP, URL: http://www.agmip.org/wp-content/uploads/2013/ 10/Guide -for- Running-AgMIP-ClimateScenario-Generation-with-R-v2.3.pdf.
- Soltani, A. (2009). Mathematical Modeling in Field Crops. Ferdowsi of Mashhad Univ. Press,176p. (In Persian).
- Soltani, A., & Sinclair, T.R. (2011). A simple model for chickpea development, growth and yield. Field Crops Research, 124, 252-260.
- Meza, F.J., Silva, D. & Vigil, H. (2008). Climate change impacts on irrigated maize in Mediterranean climates: Evaluation of double cropping as an emerging adaptation alternative. Agricultural Systems, 98, 21–30.
- Asseng, S., Jamieson, P.D., Kimball, B., Pinter, P., Sayre, K., Bowden, J.W., & Howden, S.M. (2004). Simulated wheat growth affected by rising temperature, increased water deficit and elevated atmospheric CO2. Field Crops Research, 85, 85-102.
- Yano, T., Aydin, M., & Haraguchi, T. (2007). Impact of climate change on irrigation demand and crop growth in a Mediterranean environment of Turkey. Sensors, 7, 2297-2315.
- Fischer,, Tupelo, F.N., Velthuizen, H., & Wiberg, D.A. (2007). Climate change impacts on irrigation water requirements: effects of mitigation, 1990–2080. Technological Forecasting Social Change, 74(7), 1083–1107.
- Soltani, A., Gholipoor, M. & Ghassemi-Golezani, K. (2007). Analysis of temperature and atmospheric CO2 effects on radiation use efficiency in chickpea (Cicer arietinum). Journal of Plant Sciences, 2, 89-95.
- Mohammed, A., Tana, T., Singh, P., Molla, A., & Seid, A. (2017). Identifying best crop management practices for chickpea (Cicer arietinum) in Northeastern Ethiopia under climate change condition. Agricultural Water Management,194, 68-77.
- Qian, B., Zhang, X., Smith, W., Grant, B., Jing, Q., Cannon, A. J., & Zhao, J. (2019). Climate change impacts on Canadian yields of spring wheat, canola and maize for global warming levels of 1.5 C, 2.0 C, 2.5 C and 3.0 C. Environmental Research Letters, 14(7), 074005.
- Reynolds, M.P., Calderini, D., Condon, A., & Vargas, M. (2007). Association of source/sink traits with yield, biomass and radiation use efficiency among random sister lines from three wheat crosses in a high-yield environment. Journal of Agricultural Science, 145, 3-16.
- Xu, Z., Zheng, X., Wang, Y., Wang, Y., Huang, Y., & Zhu, J. (2006). Effect of free-air atmospheric CO2 enrichment on dark respiration of rice plants (Oryza sativa). Agriculture, Ecosystems and Environment, 115(1-4), 105-112.
- Chen, S.X., Zhang, H., Sun, T., & Ren, Y.W. (2010). Effects of winter wheat row spacing on evapotranspiration, grain yield and water use efficiency. Agricultural Water Management, 97, 1126 -1132.
- Dadrasi, A., Torabi, B., Rahimi, A., Soltani, A., Salmani, F., Nehbandani, A., Nourbakhsh, F., & Ullah, A. (2022). Evaluation of water productivity in the main areas of potato cultivation in Iran, Potato Research. https://doi.org/10.1007/s11540-022-09603-7
|