
تعداد نشریات | 13 |
تعداد شمارهها | 646 |
تعداد مقالات | 6,748 |
تعداد مشاهده مقاله | 9,370,885 |
تعداد دریافت فایل اصل مقاله | 8,740,506 |
بررسی واکنش مورفوفیزیولوژیکی و فیتوشیمیایی ریحان دارچینی به برخی محرکهای رشدی | ||
پژوهشهای تولید گیاهی | ||
دوره 32، شماره 2، تیر 1404، صفحه 129-153 اصل مقاله (946.94 K) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/jopp.2024.22511.3151 | ||
نویسندگان | ||
مینا رضوی امین1؛ محمود رمرودی* 2؛ زینب محکمی3؛ علیرضا سیروس مهر4 | ||
1دانشجوی کارشناسیارشد آگرواکولوژی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران | ||
2نویسنده مسئول، استاد گروه زراعت، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران | ||
3استادیار گروه زراعت و اصلاح نباتات، پژوهشکده کشاورزی، پژوهشگاه زابل، زابل، ایران | ||
4دانشیار گروه زراعت، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران | ||
چکیده | ||
سابقه و هدف: کاربرد محرکهای زیستی در راستای تولید فرآوردههای بیولوژیکی سازگار با محیط زیست و در پیوند با کشاورزی نوین میتواند سبب افزایش رشد کمی و کیفی و کاهش اثرات تنشهای محیطی بر آنها شود. گیاه دارویی ریحان دارچینی که به سبب طعم تند آن با نام ریحان تند مکزیکی یا دارچینی شناخته میشود. با توجه به اهمیت افزایش کمیت و کیفیت گیاهان داروئی، بویژه آن گروه از گیاهان که در سبد غذایی خانوار جای دارند و از آنجائیکه مطالعات اندکی پیرامون نقش محرکهای زیستی در کمیت و کیفیت گیاه داروئی ریحان دارچینی وجود دارد. فلذا این پژوهش به منظور بررسی پاسخهای فیزیومورفولوژیکی و فیتوشیمیایی ریحان دارچینی نسبت به محرکهای زیستی اجرا شد. مواد و روشها: این مطالعه در گلخانه پژوهشکده کشاورزی پژوهشگاه در شهرستان زهک اجرا شد. تیمارهای آزمایش شامل محلولپاشی با براسینواستروئید در 3 سطح (0، 200 و 400 پیپیام)، کاراگینان ( 0، 150 و 300 پیپیام) و نانو ذرات روی سنتز شده در عصاره جینسینگ (0، 100 و 500 پیپیام) بودند و در مراحل 4، 8 و 12 برگی محلولپاشی شدند. پس از طی یک فصل رشد و در زمان گلدهی گیاهان، ویژگیهای مورفولوژیکی نظیر ارتفاع بوته، تعداد گلآذین در بوته، تعداد گلچه در گلآذین، وزن تر و خشک بوته سنجش شد. همچنین ویژگیهای فیزیولوژیکی از جمله رنگیزههای فتوسنتزی (کلروفیل a، کلروفیل b و کلروفیل کل) و آنتوسیانین به روش اسپکتروفتومتری و ویژگیهای فیتوشیمیایی نظیر محتوای فنل کل به روش معرف فولین سیوکالتیو، فلاونوئید کل به روش رنگسنجی کلرید آلومینیوم، فعالیت آنتیاکسیدانی به روش درصد مهار رادیکالهای آزاد DPPH اندازهگیری شد. داده-های حاصل با کمک نرمافزار آماری SASنسخه 1/9 آنالیز شده و مقایسه میانگین دادهها با آزمون LSD در سطح احتمال 5 درصد انجام شد. یافتهها: نتایج نشان داد که ارتفاع بوته، تعداد گلآذین در بوته، تعداد گلچه در گلآذین، طول گلآذین، وزن خشک بوته، میزان کلروفیل a، b و کل، فنل کل، فلاونوئید کل و فعالیت آنتیاکسیدانی تحت اثر محلولپاشی با محرک زیستی (در فصل گلدهی) بهطور معنیداری افزایش یافتند. بیشترین محتوای فنولی (49/150 معادل میلیگرم اسیدگالیک/گرم وزن تر) در تیمار محلولپاشی با کاراگینان 150 پیپیام + نانوذره سنتز سبز روی 100 پیپیام تجمع یافت. نانو ذرات سبز روی بیشترین تأثیر را بر فعالیت آنتیاکسیدانی عصاره ریحان دارچینی داشت؛ بهطوریکه بالاترین درصد مهار رادیکالهای آزاد DPPH (66/92 درصد) مشاهده گردید. نتیجهگیری: به طور کلی میتوان گفت که محرکهای زیستی براسینواستروئید، کاراگینان و نانو ذرات روی سبز در غلظتهای بالا جهت تحریک رشد رویشی و افزایش سنتز برخی متابولیتهای ثانویه موثر بوده است. | ||
کلیدواژهها | ||
آنتیاکسیدان؛ براسینواستروئید؛ کاراگینان؛ فلاونوئید؛ نانوذرات روی | ||
مراجع | ||
1.Ghafarinejad, S. A., Nurqalipour, F., & Ghaibi, M. N. (2018). Plant growth stimulants, their role in plant physiology, absorption of nutrients and coping with environmental stresses. Journal of Land Management, 8(1), 47-67.
2.https://farhikhtegandaily.com/page/237607/.
3.Fallahi, J., Koocheki, A., & Rezvani Moghaddam, P. (2008). Effects of biofertilizers on quantitative and qualitative yield of chamomile (Matricaria recutita L.) as a medicinal plant. Iranian Journal of Field Crops, 7 (1), 127-35.
4.Omidbeigi, R. (2014). Production and processing of medicinal plants. Volume 3, fifth edition. Astan Quds Razavi Publications. P. 397.
5.Chma, N., Sharif, A., & Akrinm, S. M. (2015). Biotogical and pharmacotogicat propertie of the Sweet Basil (Ocimum Basilicum). British Journal of Pharmaceutical Research, 7, 330-339.
6.Nakhaei, M. M. (2006). In vitro anti-Helicobacter pylori effects of sweet basil (Ocimum basilicum L.) and purple basil (Ocimum basilicum var. purpurascens). Pakistan Journal of Biological Sciences, 9 (15), 2887-291.
7.Amrani, S., Harnafi, H., Bouanani Nel, H., Aziz, M., Caid, H. S., Manfredini, S., Besco, E., Napolitano, M., & Bravo, E. (2006). Hypolipidaemic activity of aqueous Ocimum basilicum extract in acute hyperlipidaemia induced by triton WR‐1339 in rats and its antioxidant property. Phytotherapy Research,2(12), 1040-1045.
8.Vogtmann, H., Matthies, K., Kehres, B., & MeierPloger, A. (1993). Enhanced food quality: Effect of composts on the quality of plant foods. Compost Science & Utilization, 1, 82-100.
9.Jahan, M., & Koocheki, A. (1999). Effect of organic production of german chamomile (Maricaria chamomilla L.) on its chemical composition. Pajouhesh & Sazandegi, 61, 87-95.
10.Starck, Z. (2005). Growing assistant: Application of growth regulators and biostimulators in modern plant cultivation (in Polish). Rolnik Dzierawca, 2, 74-86.
11.Golzadeh, H., MehrAfarin, A., Naqdibadi, H. A., Faeze Fazli, F., Qadri, A., & Zarin Panjah, N. (2018). The effect of biological stimuli on the quantitative and qualitative performance of the German chamomile (Maricaria chamomilla L.) plant. Quarterly Journal of Medicinal Plants, 11(1), 195-207.
12.Kumar, R. R., Marimuthu, S., & Muraleedharan, N. (1999). Tea leaf photosynthesis in relation to light. Journal of Plant Crops, 27, 93-8.
13.Li, Y. C., Stoffella, P. J., & Bryan, H. H. (2000). Management of organic amendments in vegetables crop production systems in Florida. Annual Proceedings Soil and Crop Science Society of Florida, 59, 17-21.
14.Asad, A., Blamey, F. P. C., & Edwards, D. G. (2002). Dry matter production and boron concentrations of vegetative and reproductive tissues of canola and sunflower plants grown in nutrient solution. Plant Soil, 243, 243-52.
15.Sabirov, A. M., Gibadullina, F. S., Loseva, N. L., & Fattakhov, S. G. (2003). Effect of growth regulators on productivity of fodder crops. Kormoproizvodstvo, 5, 21-3.
16.Yildirim, E. (2007). Soil fertilization of humic acid affect productivity and quality of tomato. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science, 57, 182-6.
17.Thomas, J., Mandal, A. K. A., Raj Kumar, R., & Chordia, A. (2009). Role of biologically active amino acid formulations on quality and crop productivity of tea (Camellia sp). International Journal of Agricultural Research, 4, 228-236.
18.Javed, R., Yucesan, B., Zia, M., & Gurel, E. (2022). Nanoelicitation: a promising and emerging technology for triggering the sustainable in vitro production of secondary metabolites in medicinal plants. In Plant and nanoparticles (pp. 265-280). Singapore: Springer Nature Singapore.
19.Bi, F., Iqbal, S., Arman, M., Ali, A., & Hassan, M. (2011). Carrageenan as an elicitor of induced secondary metabolites and its effects on various growth characters of chickpea and maize plants. Journal of Saudi Chemical Society, 15, 269-273. 20.Mariano, R. A. (2018). Profitability Analysis of Irradiated Carrageenan as a Biostimulant in Small-Scale Rice Farming in Selected Provinces in the Philippines. Journal of Global Business and Trade, 4(2), 15-30.
21.Alam, M. Z., Braun, G., Norrie, J., & Hodges, D. M. (2013). Effect of Ascophyllum extract application on plant growth, fruit yield and soil microbial communities of strawberry. Canadian. Journal of Plant Science, 93, 23-36.
22.Jannin, L., Arkoun, M., & Etienne, P. (2013). Brassica napus growth is promoted by Ascophyllum nodosum (L.) Le Jol. Seaweed extract: Microarray analysis and physiological characterization of N, C, and S. metabolisms. Journal of Plant Growth Regulations, 32, 31-52.
23.Craigie, J. S. (2011). Seaweed extract stimuli in plant science and agriculture. Journal of Appllied Phycology, 23, 371-393.
24.Calvo, P., Nelson, L., & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil, 383(1-2), 3-41.
25.Khan W., Hiltz, D., Critchley, A. T., & Prithiviraj, B. (2011). Bioassay to detect Ascophyllum nodosum extract-induced cytokinin-like activity in Arabidopsis thaliana. Journal of Appllied Phycology, 23, 409-414.
26.Zodape, S. T., Gupta, A., & Bhandari, S. C. (2011). Foliar application of seaweed sap as biostimulant for enhancement of yield and quality of tomato (Lycopersicon esculentum Mill). Journal of Scientific & Industrial Research, 70, 215-219.
27.Fan, D., Hodges, D. M., Critchley, A. T., & Prithiviraj, B. (2013). A commercial extract of brown macroagla (Ascophyllum nodosum) affects yield and the nutritional quality of spinach in vitro. Communication in Soil Science Plant Analaysis, 44, 1873-1884.
28.Tang, J., Han, Z., & Chaii, J. (2016). Q & A: What are brassinosteroids and how do they act in plants. BMC Biology, 14 (113), 1-5.
29.Susila, T., Amarender Reddy, S., Rajkumar, M., Padmaja, G., & Rao, P. V. (2012). Effects of sowing date and spraying of brassinosteroid on yield and fruit quality characters of watermelon. World Journal of Agricultural Sciences, 8(3), 223-228.
30.Taiz, L., & Zeiger, E. (1995). Plant Physiology Edition. Panima Publishing Corporation, New Delhi, Bangalore.
31.Stoker, K. G., Cooke, D. T., & Hill, D. J. (1998). An improved method for the large-scale processing of woad (Isatis tinctoria) for possible commercial production of woad indigo. Journal of Agricultural Engineering Research, 71(4), 315-320.
32.Rivero-Montejo, S. D. J., Vargas-Hernandez, M., & Torres-Pacheco, I. (2021). Nanoparticles as novel elicitors to improve bioactive compounds in plants. Agriculture, 11(2), 134.
33.Krizek, D. T., Britz, S. J., & Mirecki, R. M. (1998). Inhibitory effects of ambient levels of solar UV‐A and UV‐B radiation on growth of cv. New Red Fire lettuce. Physiologia Plantarum, 103(1), 1-7.
34.Salama, H. M. H. (2012). Effects of silver nanoparticlesin some crop plants, common bean (Phaseolus Vulgaris L.) and corn (Zea Mays L.). International Research Journal of Biotechnolgy, 3, 190-197.
35.Li, D., An, Q., Wu, Y., Li, J. Q., & Pan, C. (2020). Foliar application of selenium nanoparticles on celery stimulates several nutrient component levels by regulating the α-linolenic acid pathway. ACS Sustainable Chemistry Engineering, 8, 10502-10510.
36.Ahmad, M. A., Javed, R., Adeel, M., Rizwan, M., Ao, Q., &Yang, Y. (2020). Engineered ZnO and CuO nanoparticles ameliorate morphological and biochemical response in tissue culture regenerants of candyleaf (Stevia rebaudiana). Molecules, 25, 1356.
37.Gohari, Gh. R., Hasanpour Aghdam, M. B., Dadpour, M. R., & Shirdel, M. (2013). Effect of different Zink spraing on growth parameter and essential oil yield in Basil plant under salinity stress. Science and Technology of Greenhouse Crops, 4(15), 15-23.
38.Krizek, D. T., Britz, S. J., & Mirecki, R. M. (1998). Inhibitory effects of ambient levels of solar UV‐A and UV‐B radiation on growth of cv. New Red Fire lettuce. Physiologia Plantarum, 103(1), 1-7.
39.Mahmood Zadeh, H., Nabavi, M., & Kashefi, H. (2013). Effect of nanoscale Ti tanium dioxide particles on the germination and growth of canola (Brassica napus). Journal of Ornamental and Horticuntural Plants, 3, 25-32.
40.Horax, R., Hettiarachchy, N., & Chen, P. (2010). Extraction, quantification, and antioxidant activities of phenolics from pericarp and seeds of bitter melons (Momordica charantia) harvested at three maturity stages (immature, mature, and ripe). Journal of Agricultural and Food Chemistry, 58, 4428-4433.
41.Mashayikhi, K., & Atashi, P. (2015). Guide to plant physiology tests (checking before and after harvesting plants). Agricultural Education Research Publications. Pp. 296-298.
42.Taheri, G. H. (2016). Effects of chitosan spraying on physiological characteristics of Ferula flabelliloba (Apiaceae) under drought stress. Iranian Journal of Field Crops Research, 13(4), 728-737.
43.Chang, Ch., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3), 178-182. 44.Barros, L., Falcão, S., Baptista, P., Freire, C., Vilas-Boas, M., & Ferreira, I. C. F. R. (2008). Antioxidant activity of Agaricus sp. mushrooms by chemical, biochemical and electrochemical assays. Food Chemistry, 111(1), 61-66.
45.Salehi, A., Qalavand, A., Sefidkan, F., & Asgharzadeh, A. (2018). The effect of using zeolite, microbial inoculum and vermicompost on the concentration of N, P, K elements, the amount of essential oil and the yield of essential oil in the organic cultivation of german chamomile medicinal plant (Matricaria chamomilla L.). Iranian Medicinal and Aromatic Plants Research, 27(2), 188-201.
46.Hosseini, M., Ramazan, D., Rahimi, M., Mohkami, Z., & Haddadi, T. (2022). Investigating the effect of carrageenan biostimulants, green extract containing silver nanoparticles and Trichoderma harzanium fungus on some morphological and phytochemical traits of lemongrass medicinal plant under greenhouse conditions. University of Zabol. School of Agriculture. Department of Horticultural Sciences.
47.Li, Z., & He, Y. (2020). Roles of Brassinosteroids in Plant Reproduction. International Journal of Molecular Sciences, 21 (872), 1-16.
48.Rezanejad F., Abolhassani, E., & Ganjalikhani Hakemi, F. (2024). Effect of brassinosteroids on flowering and expression levels of APETALA1 (AP1) gene in different organs of Eruca sativa. Journal of Biotechnology in Tarbiyat Modares University, 14(1), 117-129.
49.Latifikhah, E., Eshghi, S., Gharaghani, A., Tafazoli, E., & Razzaghi, F. (2019). Effect of foliar application of Brassinosteroids on growth, yield and fruit quality of two strawberry cultivars under salt stress in soilless culture. Iranian Journal of Horticultural Science, 50(3), 697-707.
50.Gholami, A., Abaspour, H., Gerami, M., & Ghorbani, A. (2016). Effect of nanochalate Fe on growth and physiologic propertice of basil (Ocimum basilicum L.) under salinity stress. Agricultural Plant Ecophysiology Jurnal, 8, 117-133.
51.Gomes, M. D. M. A., Campostrini, E., Leal, N. R., Viana, A. P., Ferraz, T. M., do Nascimento Siqueira, L., & Zullo, M. A. T. (2006). Brassinosteroid analogue effects on the yield of yellow passion fruit plants (Passiflora edulis). Scientia Horticulturae, 110(3), 235-240.
52.Rostami Qadir Moghadam, M., Ghasemi Pirbaluti, A., & Tehranifar, A. (2017). The effect of foliar application of iron and zinc in the form of sulfates and nanoparticles on the morphological and biochemical characteristics of peppermint (Mentha piperita L.) under salt stress. Environmental Stresses in Agricultural Sciences, 11(3), 707-720. SID. https://sid.ir/paper/389692/fa. 53.Mohkami, Z., SaniKhani, M., Kheiry, A., Bahari, A., & Tavakoli Zadeh Esfahani, M. (2021). Studying the effect of some abiotic stimuli on the morphological and phytochemical characteristics of Carla. Journal of Plant Production Research, 28(2), 183-202.
54.San, P. T., Khanh, C. M., Khanh, H. H. N., Khoa, T. A., Hoang, N., Thinh, P. D., & Nguyen, T. D. (2021). Impacts of κ-Oligocarrageenan application on photosynthesis, nutrient uptake and bean yield of coffee (Coffea robusta) (Kesan Pengaplikasian κ-Oligokaragenan pada Fotosintesis, pengambilan nutrien dan hasil biji kopi (Coffea robusta). Sains Malaysiana, 50(11), 3171-3179.
55.Naeem, M. (2021). The role of social media to generate social proof as engaged society for stockpiling behaviour of customers during Covid-19 pandemic". Qualitative Market Research, 24(3), 281-301.
56.Bazi, S. (2017). Investigation of the effect of zinc oxide nanoparticles on the pigments of basil plant (Ocimum basilicum L.). The third national biology conference of Payam Noor University, Sari, https://civilica.com/doc/878862.
57.Zhang, S., Li, H., Liang, X., Yan, Y., Xia, P., Jia, Y., & Liang, Z. (2015). Enhanced production of phenolic acids in Salvia miltiorrhiza hairy root cultures by combing the RNAi-mediated silencing of chalcone synthase gene with salicylic acid treatment. Biochemical Engineering Journal, 103, 185-192.
58.Mousavi, E. A., Kalantari, K. M., Nasibi, F., & Oloumi, H. (2018). Effects of carrageenan as elicitor to stimulate defense responses of basil against Cuscuta campestris Yunck. Acta Botanica Croatica, 77(1), 62-69.
59.Hossain, A. M., Mian, M. H., Hakim, M., & Islam, M. (2012). Isolation and selection of Bradyrhizobium from the root nodules of indigo plants. African Journal of Biotechnology, 11, 12113-12191.
60.Katsarou, A., Gudbjörnsdottir, S., Rawshani, A., Dabelea, D., Bonifacio, E., & Anderson, B. J. (2017). Type 1 diabetes mellitus. Nature Reviews Disease Primers, 3, 1-17.
61.Rahdari, S. (2022). The effect of biological elicitors on some morphological and physiological parameters of Indigofera tinctoria L. The Thesis Submitted for the Degree of M.Sc (in the field of Plant Physiology). Department of Biology. University of Zabol, Iran.
62.Hamid, N., & Masood, Q. (2018). Comparative study of vesicular arbuscular mycorrhiza (VAM) and brassinosteroid (BRs) activity on different metabolites in Luffa cylindrica (L.) Roem. International Journal of Biology Research, 6(2), 95-101.
63.Hashemi, Sh., Nadernejad, N., Pourseyedi, Sh., & Asrar, Z. (2019). Investigation of toxicity of zinc oxide nanoparticles synthesized by olive extract on growth and pigments in Borago officinalis. Plant Process and Function, 7(27), 303-315.
64.Morteza, E., Moaveni, P., Aliabadi Farahani, H., & Kiyani, M. (2013). Study of photosynthetic pigments changes of maize (Zea mays L.) under nano Tio2 spraying at various growth stages. SpringerPlus, 2 (247).
65.Salachna, P., Mizielińska, M., Płoszaj-Witkowska, B., & Jaszczak, A. (2021). Zinc Oxide Nanoparticles Enhanced Biomass and Zinc Content and Induced Changes in Biological Properties of Red Perilla frutescens. Materials, 14, 6182. https://doi.org/10.3390/ma14206182.
66.Chung, I. M., Thiruvengadam, M., Rekha, K., & Rajakumar, G. (2016). Elicitation enhanced the production of phenolic compounds and biological activities in hairy root cultures of bitter melon (Momordica charantia L.). Brazilian Archives of Biology and Technology; 59(3), 1-10.
67.Krishnaraj, C., Ramachandran, R., Mohan, K., & Kalaichelvan, P. T. (2012). Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim Acta A Mol Biomol Spectrosc, 93, 95-9.
68.Nasibi, F., Manuchehri Kalantari, K., Zare Zeinali, M., & Ahmadi Mousavi, E. (2020). Effect of melatonin premedication on some physiological parameters and reduction of oxidative stress in Tagetes etecta seedlings under salt stress. Plant Process and Function, 9 (35), 115-125.
69.Jayaraj, J., Wan, A., Rahman, M., & Punja, Z. K. (2008). Seaweed extract reduces foliar fungal diseases on carrot. Crop Protection, 27(10), 1360-1366.
70.Vaughn, K., & Duke, S. (2006). Function of polyphenol oxidase in higher plants. Physiologia Plantarum, 60(1), 106-112.
71.Lattanzio, V., Lattanzio, V., Lattanzio, A., & Cardinali, A. (2006). Advances in Research Chapter: Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochemistry, 37, 23-67.
72.Kanthaliya, B., Joshi, A., Arora, J., Alqahtani, M. D., & Abd-Allah, E. F. (2023). Effect of biotic elicitors on the growth, antioxidant activity and metabolites accumulation in In Vitro propagated shoots of Pueraria tuberosa. Plants, 12, 1300.
73.Shakya, P., Marslin, G., Siram, K., Beerhues, L., & Franklin, G. (2019). Elicitation as a tool to improve the profiles of high-value secondary metabolites and pharmacological properties of Hypericum Perforatum Journal of Pharm Pharmacology, 71, 70-82.
74.Mosavat, N., Golkar, P., Yousefifard, M., & Javed, R. (2019). Modulation of callus growth and secondary metabolites in different Thymus species and Zataria multiflora micropropagated under ZnO nanoparticles stress. Biotechnol. Appl. Biochem. 66, 316-322.
75.Nazir, S., Jan, H., Zaman, G., Khan, T., Ashraf, H., Meer, B., & Abbasi, B. H. (2021). Copper oxide (CuO) and manganese oxide (MnO) nanoparticles induced biomass accumulation, antioxidants biosynthesis and abiotic elicitation of bioactive compounds in callus cultures of Ocimum basilicum (Thai basil). Artificial Cells, Nanomedicine, and Biotechnology, 49(1), 625-633.
76.Jahani, F., Tohidi-Moghadam, H. R., Larijani, H. R., Ghooshchi, F., & Oveysi, M. (2021). Influence of zinc and salicylic acid foliar application on total chlorophyll, phenolic components, yield and essential oil composition of peppermint (Mentha piperita L.) under drought stress condition. Arabian Journal of Geosciences, 14, 1-12.
77.Aghaee, A., Shahabivand, S., Athari, M., & Nasiri, Y. (2022). The effect of foliar application of zinc oxide and zinc nanoparticles on growth, photosynthetic pigments and essential oil compounds of green basil. Journal of Plant Research, 35(2), 218-231. | ||
آمار تعداد مشاهده مقاله: 187 تعداد دریافت فایل اصل مقاله: 8 |