
تعداد نشریات | 13 |
تعداد شمارهها | 623 |
تعداد مقالات | 6,502 |
تعداد مشاهده مقاله | 8,651,493 |
تعداد دریافت فایل اصل مقاله | 8,257,075 |
بررسی تغییرات ویژگی های فتوسنتزی، محتوای موسیلاژی و اجزای عملکرد بنفشه ارسبارانی (.Viola ignobilis Rupr) در پاسخ به محرکهای زیستی و شدت نور | ||
پژوهشهای تولید گیاهی | ||
مقاله 2، دوره 31، شماره 3، مهر 1403، صفحه 17-41 اصل مقاله (633.11 K) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/jopp.2023.21477.3055 | ||
نویسندگان | ||
روشنک انصاری1؛ خدایار همتی* 2؛ سارا خراسانی نژاد3؛ ناهید نیاری خمسی4 | ||
1دانشجوی دکتری فیزیولوژی گیاهان دارویی، گروه باغبانی، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران. | ||
2نویسنده مسئول، دانشیار گروه باغبانی، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران. | ||
3دانشیار گروه باغبانی، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران. | ||
4استادیار گروه زراعت و اصلاح نباتات، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران، | ||
چکیده | ||
چکیده سابقه و هدف: در طول دهههای گذشته مصرف بیرویه کودهای شیمیایی در کشاورزی به واسطهی وجود آلایندهها و بقایای خطرناک موجب آلودگی محیط زیست شده است. بنابراین راهکارهای کشاورزی پایدار بهعنوان روشهای سازگار با طبیعت میتوانند در افزایش تولید محصولات و کاهش اثرات سوء بر اکوسیستم مفید واقع شوند. همچنین، بهینهسازی شرایط محیطی با تأثیر بر فرایندهای فیزیولوژیکی و متابولیکی گیاهان دارویی به رشد بهتر و افزایش عملکرد در آنها منجر میگردد. در همین راستا تحقیق حاضر طی سال زراعی 1401 - 1400 بهمنظور ارزیابی صفات مورفوفیزیولوژیکی و محتوای موسیلاژی بنفشه ارسبارانی (Viola ignobilis Rupr.) انجام شد. مواد و روشها: این آزمایش بر اساس طرح اسپلیتپلات بر پایه بلوکهای کامل تصادفی با 3 تکرار انجام شد. تیمارها شامل فاکتورهای اصلی با دو شدت نور (50 و100 درصد نور طبیعی) و محرکهای زیستی بهعنوان فاکتورهای فرعی شامل پروتئین هیدرولیز گیاهی، پروتئین هیدرولیز جانوری، عصاره جلبک قهوهای آکادین، پروتئین هیدرولیز گیاهی + جلبک قهوهای آکادین، پروتئین هیدرولیز جانوری + جلبک قهوهای آکادین و گیاهان شاهد (عدم کاربرد محرکهای زیستی) بودند. پروتیئنهای هیدرولیز ذکر شده بهصورت محلولپاشی برگی در غلظت (صفر و 2/0 گرم در لیتر) و عصاره جلبک بهصورت مستقیم بر روی خاک در غلظت (صفر و 2 گرم در لیتر) استفاده شدند. یافتهها: نتایج حاصل از این تحقیق نشان داد که وزنتر و خشک اندام هوایی بهترتیب 66/11 درصد و 39/29 در شدت نور 100 درصد نسبت به شرایط سایه افزایش یافت. همچنین میزان کربوهیدراتهای محلول و پروتئینکل بهترتیب 18/14 درصد و 29/19 درصد در شدت نور 100 درصد نسبت به شرایط سایه مقادیر بیشتری را نشان داد. مقادیر موسیلاژی در برگ و گل بهترتیب به میزان 77/12 درصد و 85/25 درصد در شدت نور 100 درصد بیشتر از شرایط 50 درصد سایه بود. در این تحقیق وزنتر و خشک ریشه تحت تاثیر شدت نور قرار نگرفت. همچنین کاربرد همهی انواع محرکهای زیستی دارای اثرات مثبت معنیدار بر تمامی صفات مورد ارزیابی در این آزمایش بودند، بهطوریکه بیشترین میانگین اجزای عملکرد در کاربرد پروتئین هیدرولیز جانوری + عصاره جلبک حاصل شد، هرچند تفاوت معنیداری با مصرف پروتئین هیدرولیز گیاهی + عصاره جلبک نشان ندادند. از نظر محتوای موسیلاژی نیز بیشترین مقادیر موسیلاژ در استفاده از پروتئین هیدرولیز گیاهی + عصاره جلبک بهدست آمد اما تفاوت معنیداری با کاربرد محرکهای زیستی مختلف به استثنای جلبک آکادین مشاهده نشد. برهمکنش متقابل بین دو فاکتور نور و محرکهای زیستی فقط بر صفات سطح برگ و تعداد گل معنیدار شد. در این تحقیق، اثر نور بر کلروفیلکل و کاروتنوئید معنیدار نشد اما کاربرد محرکهای زیستی به افزایش قابلملاحظهی این رنگدانهها نسبت به گیاهان شاهد منجر گردید. همچنین بررسی صفات فتوسنتزی نشان داد که نرخ تعرق، هدایت روزنهای و نرخ جذب و تحلیل خالصCO2 به-ترتیب بهمیزان 13 درصد، 95/16 درصد و 95/10 درصد در شدت نور 100 درصد بیشتر از شرایط سایه بود، ضمن اینکه گیاهان تیمار شده با محرکهای زیستی در مقایسه با گیاهان تیمار نشده در صفات مرتبط با تبادلات گازی مقادیر بالاتری را نشان دادند. نتیجهگیری: نتایج حاصل از این تحقیق نشان داد که تغییر و بهینهسازی شرایط رشد گیاهان دارویی به بهبود رشد و افزایش تولید متابولیت-های اولیه و ثانویه در آنها منجر میشود. در این تحقیق کاربرد همهی انواع محرکهای زیستی سبب افزایش قابلتوجهی در صفات رویشی، کارایی فتوسنتزی و محتوای موسیلاژی بنفشه گردیدند اما کاربرد توأم پروتئین هیدرولیز و عصاره جلبک آکادین به نتایج مطلوب-تری منجر گشت که احتمالاً بهدلیل اثرات همافزایی کاربرد این دسته از محرکهای زیستی در این آزمایش میباشد. واژههای کلیدی: بنفشهسانان، پروتئین هیدرولیز، عصاره جلبک، موسیلاژ. | ||
کلیدواژهها | ||
پروتئین هیدرولیز؛ عصاره جلبک؛ موسیلاژ؛ بنفشهسانان | ||
مراجع | ||
1.Ghorbani, M., Khorasaninejad, S., Hemmati, K., & Ghorbani, K. (2022). Feasibility study on some native Iranian Viola spp. domestication. Iranian Journal of Medicinal and Aromatic Plants Research, 38 (4), 632-650. [In Persian]
2.Donyadoust Chalan, M., Abbasi, M., & Rezaei, S. (2009). The rust mycobiota of arasbaran protected area, NW of Iran. Botanical Journal of Iran, 10 (36), 178-192. [In Persian]
3.Payal, M., Vikas, G., Manish, G., Nishant, T., & Parveen, B. (2015). Phytochemical and pharmacological potential of Viola odorata. Iranian Journal of Pathology, 2 (5), 215-20.4.Ameri, A., Heydarirad, G., Mahdavi Jafari, J., Ghobadi, A., Rezaeizadeh, H., & Choopani, R. (2015). Medicinal plants contain mucilage used in traditional Persian medicine (TPM). Pharmaceutical Biolology, 53 (4), 615-623.5.Pan, J., & Guo, B. (2016). Effects of Light Intensity on the Growth, Photosynthetic Characteristics, & Flavonoid Content of Epimedium pseudowushanense. Molecules, 21 (11), 1475. P12.6.Colla, G., Cardarelli, M., Bonini, P., & Rouphael, Y. (2017). Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato. HortScience. 52 (9), 1214-20.7.Baroccio, F., Barilaro, N., & Tolomei, P. (2017). Classification of biostimulants origin using amino acids composition of hydrolyzed proteins. Journal of Horticultural Science and Research, 1 (2), 30-35.8.Ciriello, M., Formisano, L., El-Nakhel, C., Corrado, G., & Rouphael, Y. (2022). Biostimulatory Action of a Plant-Derived Protein Hydrolysate on Morphological Traits, Photosynthetic Parameters, and Mineral Composition of Two Basil Cultivars Grown Hydroponically under Variable Electrical Conductivity., Horticultrae, 8 (5), 409-415.9.Ali, O., Ramsubhag, A., & Jayaraman, J. (2021). Biostimulant Properties of Seaweed Extracts in Plants: Implications towards Sustainable Crop Production. Plants, 10 (3), 531-537.10.Shekofteh, H., Shahrokhi, H., & Solimani, E. (2015). Effect of drought stress and salicylic acid on yield and mucilage content of the medicinal herb Plantago ovata Forssk'. Desert, 20 (2), 245-252.11.Xie, C., Li, J., Pan, F., Fu, J., Zhou, W., Lu, S., Li, P., & Zhou, C. (2018). Environmental factors influencing mucilage accumulation of the endangered Brasenia schreberi in China. Scientific Reports, 8 (1), 17955.12.El-Nakhel, C., Cozzolino, E., Ottaiano, L., Petropoulos, S.A., Nocerino, S., Pelosi, M.E., Rouphael, Y., Mori, M., & Di Mola, I. (2022). Effect of Biostimulant Application on Plant Growth, Chlorophylls and Hydrophilic Antioxidant Activity of Spinach (Spinacia oleracea L.) Grown under Saline Stress. Horticulturae. 8, 971. https://doi.org/ 10.3390/ horticulturae 8100971.13.Kumar, R., Sharma, S., & Pathania, V. (2013). Effect of shading and plant density on growth, yield and oil composition of clary sage (Salvia sclarea L.) in north western Himalaya. Journal of Essential Oil Research, 25 (1), 23-32.14.Cristiano, G., Pallozzi, E., Conversa, G., Tufarelli, V., & De Lucia, B. (2018). Effects of an Animal-Derived Biostimulant on the Growth and Physiological Parameters of Potted Snapdragon (Antirrhinum majus L.). Frontiers in Plant Science, 9, 861.15.Gorgini Shabankareh, H., Khorasaninejad, S., Sadeghi, M., & Tabasi, A. R. (2018). The effects of irrigation periods and humic acid on morpho- physiological and biochemical traits of Thyme (Thymus vulgaris). Journal of Plant Environmental Physiology, 13 (51), 67-82. [In Persian]
16.Mozaffari, S., Khorasaninejad, S., & Gorgini Shabankareh, H. (2017). The effects of irrigation regimes and humic acid on some of physiological and biochemical traits of Common Purslane in greenhouse. Journal of Crop Improvement (Journal of Agriculture). 19 (2), 401-416. [In Persian]
17.Irigoyen, J. J., Emerich, D. W., & Sanchez Diaz, M. (1992). Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Journal of Plant Physiology, 84 (1), 55-60.18.Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.19.Porra, R. J. (2002). The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynthesis Research, 73 (1), 149-156.20.Kalayasundram, N. K., Pateb, P. B., & Dalat, K. C. (1982). Nitrogen need of Plantago ovata in reaction to the available nitrogen in soil. Indian Journal of Agricultural Sciences, 52 (4), 240-242.21.Toldi, D., Gyugos, M., Darko, E., Szalai, G., Gulyas, Z., Gierczik, K., Székely, A., Boldizsar, A., Galiba, G., Muller, M., Simon-Sarkadi, L., & Kocsy G. (2019) Light intensity and spectrum affect metabolism of glutathione and amino acids at transcriptional level. PloS one, 14 (12), 18.22.Biswal, B., Joshi, P. N., Raval, M. K., & Biswal, U. C. (2011). Photosynthesis, a global sensor of environmental stress in green plants: Stress signaling and adaptation. Current Science, 101(1), 47-56.23.Sutuliene, R., Lauzike, K., Pukas, T., & Samuoliene, G. (2022). Effect of Light Intensity on the Growth and Antioxidant Activity of Sweet Basil and Lettuce. Plants, 11 (13), 1709-1714.24.Carillo, P., Colla, G., Fusco, G. M., Dell’Aversana, E., El-Nakhel, C., Giordano, M., Pannico, A., Cozzolino, E., Mori, M., Reynaud, H., & Kyriacou, M. C. (2019). Morphological and physiological responses induced by protein hydrolysate-based biostimulant and nitrogen rates in greenhouse spinach. Agronomy, 9 (8), 450, P22.25.Consentino, B. B., Virga, G., La Placa, G. G., Sabatino, L., Rouphael, Y., Ntatsi, G., Iapichino, G., La Bella, S., Mauro, R.P., D’Anna, F., & Tuttolomondo, T. (2020). Celery (Apium graveolens L.) Performances as Subjected to Different Sources of Protein Hydrolysates. Plants, 9(12), 1633.26.Colla, G., Rouphael, Y., Canaguier, R., Svecova, E., & Cardarelli, M. (2014). Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Frontiers in Plant Science, 5, 448.27.Kim, H. J., Ku, K. M., Choi, S., & Cardarelli, M. (2019). Vegetal-Derived Biostimulant Enhances Adventitious Rooting in Cuttings of Basil, Tomato, and Chrysanthemum via Brassinosteroid- Mediated Processes. Agronomy, 9 (2), 74.28.Ambrosini, S., Sega, D., Santi, C., Zamboni, A., Varanini, Z., & Pandolfini, T. (2021). Evaluation of the Potential Use of a Collagen-Based Protein Hydrolysate as a Plant Multi-Stress Protectant. Frontiers in Plant Science, 9 (12), 600623.29.Ertani, A., Nardi, S., Francioso, O., Sanchez-Cortes, S., Di Foggia, M., & Schiavon, M. (2019). Effects of Two Protein Hydrolysates Obtained from Chickpea (Cicer arietinum L.) and Spirulina platensis on Zea mays (L.) Plants. Frontiers in Plant Science, 10, 954.30.Cai, Z. Q., Chen, Y. J., & Bongers, F. (2007). Seasonal changes in photosynthesis and growth of Zizyphus attopensis seedlings in three contrasting microhabitats in a tropical seasonal rain forest. Tree Physiology, 27 (6), 827-36.31.Asaeda, T., Hai, D., Manatunge, J., Williams, D., & Roberts, J. (2005). Latitudinal Characteristics of Below- and Above-ground Biomass of Typha: a Modelling Approach. Annals of Botany, 96 (2), 299-312.32.Tao, L., Yu-Qi, Z., Yi, Z., Rui-Feng, C., & Qi-Chang, Y. (2017). Light distribution in Chinese solar greenhouse and its effect on plant growth. International Journal of Horticultural Science, 3 (2), 99-111.33.Rezai, S., Etemadi, N., Nikbakht, A., Yousefi, M., & Majidi, M. M. (2018). Effect of Light Intensity on Leaf Morphology, Photosynthetic Capacity, and Chlorophyll Content in Sage (Salvia officinalis L.). Korean Journal of Horticultural Science and Technology, 36 (1), 46-57.34.Rouphael, Y., & Colla, G. (2018). Synergistic Biostimulatory Action: Designing the Next Generation of Plant Biostimulants for Sustainable Agriculture. Frontiers in Plant Science, 13 (9), 1-7.35.Caruso, G., De Pascale, S., Cozzolino, E., Giordano, M., El-Nakhel, C., Cuciniello, A., Cenvinzo, V., Colla, G., & Rouphael, Y. (2019). Protein hydrolysate or plant extract-based biostimulants enhanced yield and quality performances of greenhouse perennial wall rocket grown in different seasons. Plants, 8 (7), 208-218.36.Guo, Y. P., Guo, D. P., Zhou, H. F., Hu, M. J., & Shen, Y. G. (2006). Photoinhibition and xanthophyll cycle activity in bayberry (myrica rubra) leaves induced by high irradiance. Photosynthetica, 44, 439-446.37.Rezazadeh, A., Harkess, R. L., & Telmadarrehei, T. (2018). The Effect of Light Intensity and Temperature on Flowering and Morphology of Potted Red Firespike. Horticulturae, 4 (4), 36. p7.38.Kamoutsis, A. P., Chronopoulou-Sereli, A. G., & Paspatis, E. A. (1999). Paclobutrazol affects growth and flower bud production in gardenia under different light regimes. HortScience, 34, 674-675.39.De Lucia, B., & Vecchietti, L. (2012). Type of Bio-Stimulant and Application Method Effects on Stem Quality and Root System Growth in L.A. Lily. European Journal of Horticultural Science, 77 (1), 10-15.40.Dela Mata, L., Cabello, P., Dela Haba, P., & Aguera, E. (2013). Study of the senescence process in primary leaves of sunflower (Helianthus annuus L.) plants under two different light intensities. Photosynthetica, 51 (1), 85-94.41.Proietti, S., Paradiso, R., Moscatello, S., Saccardo, F., & Battistelli, A. (2023). Light Intensity Affects the Assimilation Rate and Carbohydrates Partitioning in Spinach Grown in a Controlled Environment. Plants, 12, 804.42.Tang, W., Guo, H., Baskin, C. C., Xiong, W., Yang, C., Li, Z., & Sun, J. (2022). Effect of light intensity on morphology, photosynthesis and carbon metabolism of alfalfa (Medicago sativa) seedlings. Plants, 11 (13), 1688-18.43.Seyfabadi, J., Ramezanpour, Z., & Amini Khoeyi, Z. (2011). Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes. Journal of Applied Phycology, 23, 721-726.44.Chrysargyris, A., Xylia, P., Anastasiou, M., Pantelides, I., & Tzortzakis, N. (2018). Effects of Ascophyllum nodosum seaweed extracts on lettuce growth, physiology and fresh-cut salad storage under potassium deficiency. Journal of the Science of Food and Agriculture, 98, 5861-5872.45.Calvo, P., Nelson, L., & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. International Journal of Plant & Soil Science, 383, 3-41.46.Rasouli, F., Amini, T., Asadi, M., Hassanpouraghdam, M. B., Aazami, M. A., Ercisli, S., Skrovankova, S., & Mlcek, J. (2022). Growth and antioxidant responses of lettuce (Lactuca sativa L.) to arbuscular mycorrhiza inoculation and seaweed extract foliar application. Agronomy, 12 (2), 401.47.Long, S. P., & Bernacchi, C. J. (2003). Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. Journal of Experimental Botany, 54, 2393-2401.48.Aisha, I., Linatoc, A. C., & Bin Abu Bakar, M. F. (2019). Effect of light intensity on the photosynthesis and stomatal density of selected plant species of gunung ledang, johor. Malaysian Applied Biology, 48 (3), 133-140.49.Warren, C. R., Low, M., Matyssek, R., & Tausz, M. (2007) Internal conductance to CO2 transfer of adult Fagus sylvatica: variation between sun and shade leaves and due to free-air ozone fumigation Environmental and Experimental Botany, 59, 130-138.50.Colla, G., Nardi, S., Cardarelli, M., Ertani, A., Lucini, L., Canaguier, R., & Rouphael, Y. (2015). Protein hydrolysates as biostimulants in horticulture. Scientia Horticulturae, 196, 28-38.51.Sitohy, M., Desoky, E.S., Osman, A., & Rady, M. (2020). Pumpkin seed protein hydrolysate treatment alleviates salt stress effects on Phaseolus vulgaris by elevating antioxidant capacity and recovering ion homeostasis. Scientia Horticulturae, 271, 10.1016.52.Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A., & Brown, P. H. (2017). Biostimulants in Plant Science: A Global Perspective. Frontiers in Plant Science, 7, 2049.53.Ka1uzewicz, A., Krzesinski, W., Spiżewski, T., & Zaworska, A. (2017). Effect of biostimulants on several physiological characteristics and chlorophyll content in broccoli under drought stress and re-watering. Notulae Botanicae Horti Agrobotanici, 45 (1), 197-202.54.Liu, Y. Q., Sun, X. Y., Wang, Y., & Liu, Y. (2007). Effects of shades on the photosynthetic characteristics and chlorophyll fluorescence parameters of Urtica dioica. Acta Ecolologica Sinica, 27, 3457-3464.55.Al-Juthery, W. A., Drebee, H. A., Al-Khafaji, B. M. K., & Hadi, R. F. (2020). Plant Biostimulants, Seaweeds Extract as a Model (Article Review). IOP Conference Series: Earth and Environmental Science, 553(1), 012015.56.Cortleven, A., & Schmülling, T. (2015). Regulation of chloroplast development and function by cytokinin. Journal of Experimental Botany, 66 (16), 4999-5013.57.Ertani, A., Nardi, S., Francioso, O., Sanchez-Cortes. S., Di Foggia, M., & Schiavon M. (2019). Effects of Two Protein Hydrolysates Obtained from Chickpea (Cicer arietinum L.) and Spirulina platensis on Zea mays (L.) Plants. Frontiers in Plant Science, 25 (10), 954.58.Sabatino, L., Consentino, B. B., Rouphael, Y., De Pasquale, C., Iapichino, G., D’Anna, F., & La Bella, S. (2021). Protein Hydrolysates and Mo-Biofortification Interactively Modulate Plant Performance and Quality of ‘Canasta’ Lettuce Grown in a Protected Environment. Agronomy, 11 (6), 1023.59.Di Mola, I., Cozzolino, E., Ottaiano, L., Giordano, M., Rouphael, Y., Colla, G., & Mori, M. (2019). Effect of Vegetal-and Seaweed Extract-Based Biostimulants on Agronomical and Leaf Quality Traits of Plastic Tunnel-Grown Baby Lettuce under Four Regimes of Nitrogen Fertilization. Agronomy, 9, 1-15.60.Aktsoglou, D. C., Kasampalis, D. S., Sarrou, E., Tsouvaltzis, P., Chatzopoulou, P., Martens, S., & Siomos, A. S. (2021). Protein hydrolysates supplement in the nutrient solution of soilless grown fresh peppermint and spearmint as a tool for improving product quality. Agronomy, 11, 317.61.Shafaghat, Z., & Zarinkamar, F. (2018). Tracing mucilage compounds in different stage of development of viola odorata L. leaf. Journal of Plant Research, 31 (2), 359-369. [In Persian] 62.Hashim, M., Ahmad, B., Drouet, S., Hano, C., Abbasi, B. H., & Anjum, S. (2021). Comparative Effects of Different Light Sources on the Production of Key Secondary Metabolites in Plants in Vitro Cultures. Plants, 10 (8), 1521, p18.63.Mehrafarin, A., Naghdi Badi, H., Qaderi, A., Labbafi, M., Zand, E., & Noormohammadi, G. (2015). Changes in Seed Yield and Mucilage of Fenugreek (Trigonella foenum-graecum L.) in Response to Foliar Application of Methanol as a Bio-stimulant. Journal of Medicinal Plants Research, 14 (54), 86-100. [In Persian)64.Naghizadeh, M., Kabiri, R., & Maghsoudi, K. (2022). Effects of melatonin and ascorbic acid foliar application on grain yield and mucilage of Plantago ovata Forssk. Iranian Journal of Medicinal and Aromatic Plant Research, 37 (6), 908-919. [In Persian] | ||
آمار تعداد مشاهده مقاله: 189 تعداد دریافت فایل اصل مقاله: 182 |