
تعداد نشریات | 13 |
تعداد شمارهها | 623 |
تعداد مقالات | 6,501 |
تعداد مشاهده مقاله | 8,628,348 |
تعداد دریافت فایل اصل مقاله | 8,223,282 |
امکانسنجی تخمین تنش آبی پنبه بر اساس شاخصهای طیفی تصاویر ماهواره لندست و سنتینل 2 | ||
مجله پژوهشهای حفاظت آب و خاک | ||
مقاله 5، دوره 31، شماره 2، تیر 1403، صفحه 99-117 اصل مقاله (804.83 K) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/jwsc.2024.22202.3712 | ||
نویسندگان | ||
مریم مزیدی1؛ موسی حسام* 2؛ خلیل قربانی3؛ چوقی بایرام کمکی4 | ||
1دانشجوی دکتری مهندسی آبیاری و زهکشی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران. | ||
2نویسنده مسئول، دانشیار گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران | ||
3دانشیار گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران | ||
4استادیار گروه مدیریت مناطق بیابانی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران. | ||
چکیده | ||
سابقه و هدف: کمبود آبی به عنوان یکی از عوامل تنش محصول پنبه، یک واکنش نسبت به تغییراتی است که در محیط رشد گیاه رخ میدهد و بر روی میزان بهرهوری محصولات زراعی اثر منفی میگذارد که با وجود روشهای مختلف مدیریت زمینهای زراعی، به خوبی قابل پیشگیری است. مدیریت زمینهای زراعی نیازمند استفاده از دادهها و اطلاعات کافی از بخشهای مختلف اراضی زراعی بوده و در این صورت است که میتوان بهرهوری را به شکل قابل توجهی ارتقاء داد. مواد و روشها: منطقه مورد مطالعه در محدوده اراضی پنبه روستاهای شیرعلیآباد و سیستانی محله از توابع بخش خدمات کشاورزی انجیرآب شهرستان گرگان در مختصات جغرافیایی "22 52o36 تا "52 52o36 عرض شمالی و "55 21o54 تا "50 20o54 طول شرقی است. پایش دقیق و مستمر محتوای رطوبتی خاک، به عنوان نماینده تنش رطوبتی خاک، با اندازهگیریهای میدانی رطوبت خاک و دیگر پارامترهای محیطی (دمای محیط، دمای سطح برگ، شاخص سطح برگ و همچنین شوری)، در طی فصل رشد (اواخر اردیبهشت تا اواخر مهر) به مدت 5 ماه صورت گرفت. پس از استخراج باندهای طیفی از تصاویر ماهوارهای لندست و سنتینل 2، شاخصهای طیفی محاسبه شدند. با استفاده از روشهای رگرسیون چند متغیره خطی (MLR) و رگرسیون درختی M5 ارتباط بین شاخصهای طیفی به عنوان متغیر مستقل و رطوبت سطحی خاک به عنوان متغیر وابسته، جستجو و در نهایت مدل بهینه با بررسی معیارهای ارزیابی خطا با بیشترین دقت و کمترین خطا حاصل شد. یافتهها: مدل درختی M5 نسبت به MLR از دقت بالاتری در برآورد تنش آبی پنبه برخوردار بود؛ بطوریکه در ماهواره لندست ضریب تبیین را از 51/0 به 79/0 افزایش، و مقدار خطا را از 2/4 درصد به 9/2 درصد کاهش داد. همچنین ماهواره لندست نسبت به ماهواره سنتینل 2 از دقت بالاتری برخوردار بود. بطوریکه در سنتینل 2 حداکثر ضریب تبیین 46/0 و خطای 9/4 درصد به دست آمد. در ماهواره لندست شاخص حرارتی LST تأثیرپذیری زیادی از تغییرات تنش آبی نشان داد و ترکیب 3 شاخص حرارتی LST، پوشش گیاهی NDVI و شوری SI2 با ضریب تبیین 76/0 و مقدار درصد خطای 3/3، نتایج قابل قبولی را ارائه نمود. نتیجهگیری: تأثیر تنش آبی در بازتاب، در محدوده مادون قرمز و حرارتی باعث شد تا شاخصهای حرارتی و آبی مانند LST، NMDI، NDWI و WI در اجرای گام به گام مدل درختی M5 تأثیر قابل توجهی داشته باشد. بطوریکه شاخص حرارتی LST در ماهواره لندست و شاخصهای آبی NDWI و NMDI در ماهواره سنتینل 2 از نقش مؤثرتری در برآورد تنش آبی برخوردا بودند. اط طرفی فقدان باند حرارتی در سنتینل 2 باعث کاهش دقت آن نسبت به ماهواره لندست شده است. | ||
کلیدواژهها | ||
رگرسیون درخت M5؛ سنجش از دور؛ شاخصهای حرارتی؛ ماهوارههای نوری | ||
مراجع | ||
1.Geerts, S., & Raes, D. (2009). Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agriculture Water Manage J.96 (9), 1275-1284.2.Mahan, J. R., Young, A. W., & Payton, P. (2012). Deficit irrigation in a production setting: canopy temperature as an adjunct to ET estimates. Irrigation Science J. 30 (27), 127–137.3.Baret, F., Houlès, V., & Guérif, M. (2007). Quantification of plant stress using remotesensing observations and crop models: the case of nitrogen management. Exp. Bot. J. 58 (4), 869-880.4.Jackson, R. D., Idso, S. B., Reginato, R. J., & Pinter, P. J. 1981. Canopy temperature as acropwater stress indicator. Water Resour. Res. J.17 (4), 1133-1138.5.Ranjbar, S., Akhoondzadeh, M., Brisco, B., Amani, M., & Hosseini, M. (2021). Soil moisture change monitoring from c and 1-band SAR interferometric phase observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. J.14, 7179-7197. DOI: 10.1109/JSTARS. 2021.3096063.6.Mazidi, M., Hesam, M., Ghorbani, Kh., & Komaki, Ch. B. (2024). Evaluation of Cotton Water Stress Estimation Using Multispectral Satellite Images Based on M5 Tree Model. Water Research in Agriculture J. 37 (4), 385-400. [In Persian]
7.Makaya, N. P., Mutanga, O., Kiala, Z., Dube, T., & Seutloali, K. E. (2019) .Assessing the potential of Sentinel-2 MSI sensor in detecting and mapping the spatial distribution of gullies in a communal grazing landscape. Phys. Chem. Earth Parts J. 112, 66-74. DOI:10.1016/j.pce.2019.02.001.8.Vanino, S., Nino, P., de Michele, C., Bolognesi, S. F., D’Urso, G., di Bene, C., Pennelli, B., Vuolo, F., Farina, R., & Pulighe, G. (2018). Capability of Sentinel-2 data for estimating maximum evapotranspiration and irrigation requirements for tomato crop in Central Italy. Remote Sensing Environment J. 215, 452–470. DOI:10.1016/ j.rse.2018. 06.035. 9.Huete, A. R. (2012). Vegetation indices, remote sensing and forest monitoring. Geogr. Compass. 6 (9), 513-532.10.El Hachimi, J., El Harti, A., Ouzemou, J. E., Lhissou, R., Chakouri, M., & Jellouli, A. (2021). Assessment of the benefit of a single sentinel-2 satellite image to small crop parcels mapping. Geocarto Int. J. 35 (25), 1-17.11.Zarco-Tejada, P. J., Rueda, C. A., & Ustin, S. L. (2003). Water content estimation in vegetation with MODIS reflectance data and model inversion methods. Remote Sensing of Environment J. 85 (1), 109-124.12.Rapaport, T., Hochberg, U., Shoshany, M., Karnieli, A., & Rachmilevitch, S. (2015). Combining leaf physiology, hyperspectral imaging and partial least squares-regression (PLS-R) for grapevine water status assessment. Photogrammetry and Remote Sensing J. 109, 88-97. DOI:10.1016/j.isprsjprs. 2015.09.003.13.Rozenstein, O., Haymann, N., Kaplan, G., & Tanny, J. (2018). Estimating cotton water consumption using a time series of Sentinel-2 imagery. Agricultural Water Management J. 207, 44-52. DOI:10.1016/j.agwat. 2018.05.017.14.Romero, M., Luo, Y., Su, B., & Fuentes, S. (2018). Vineyard water status estimation using multispectral imagery from an UAV platform and machine learning algorithms for irrigation scheduling management. Computers and Electronics in Agriculture J. 147, 109-117. DOI:10.1016/j. compag.2018.02.013.15.Veysi, Sh., Naseri, A. A., & Hamzeh, S. (2020). Relationship Between Field Measurement of Soil Moisture in the Effective Depth of Sugarcane Root Zone and Extracted Indices from Spectral Reflectance of Optical/ Thermal Bands of Multispectral Satellite Images. Indian Society of Remote Sensing J. DOI: 10. 1007/s12524-020-01135-2.16.Jamshidi, S., Zand-Parsa, Sh., & Niyogi, D. (2020). Assessing Crop Water Stress Index of Citrus Using In-Situ Measurements, Landsat, and Sentinel-2 Data. Remote Sensing Int. J.42 (5), 1893-1916.17.Veysi, S., Naseri, A. A., Hamzeh, S., & Bartholomeus, H. (2017). A satellite based crop water stress index for irrigation scheduling in sugarcane fields. Agricultural Water Management J. 189, 70–86. DOI:10.1016/j.agwat. 2017.04.016.18.Ghorbani, K., Salarijazi, M., & Ghahreman N. (2022). Developing Stepwise m5 Tree Model to Determine the Influential Factors on Rainfall Prediction and to Overcome the Greedy Problem of its Algorithm. Water Resources Management J.36, 3327-3348. DOI: 10.1007/s11269-022-03203-3.19.Ghorbani, K., Zolfaghari, P., Siahbalaei, M., Rezaei Ghaleh, L., Komaki, C. B., & Valizadeh, E. (2022). Estimating soil surface moisture by using landsat 8 and sentinel 2 satellites techniques depending on the stepwise decision tree. Earth Science Informatics J.17, 1147-1160. DOI: 10.1007/s12145-023-01203-4.20.Rouse, J. W., Hass, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring Vegetation Systems in the Great Plains with ERTS, Third ERTS symposium, NASA SP-35. A20. 309-317.21.Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment J. 25 (3), 295-309.22.Steven, M. D. (1998). The Sensitivity of the OSAVI Vegetation Index to Observational Parameters. Remote Sensing Environment J. 63 (1), 49-60.23.GAO, B. C. (1996). NDWI a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment J. 58 (3), 257-266.24.Wang, L., & Qu, J. J. (2007). NMDI: A normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophysical Research Letters. 34 (20), 57-61.25.Penuelas, J., Filella, I., Biel, C., Serrano, L., & Save, R. (1993). The reflectance at the 950-970 mm region as an indicator of plant water status. Remote Sensing Int. J. 14 (10), 1887-1905.26.Ceccato, P., Flasse, S., & Grégoire, J. M. (2002). Designing a spectral index to estimate vegetation water content from remote sensing data: Part 2. Validation and applications. Remote Sensing of Environment J. 82 (2-3), 198-207.27.Zarco-Tejada, P. J., Ustin, S. L., & Whiting, M. L. (2005). Temporal and spatial relationships between within-field yield variability in cotton and high-spatial hyperspectral remote sensing imagery. Agronmental J.97 (3), 641-653. | ||
آمار تعداد مشاهده مقاله: 151 تعداد دریافت فایل اصل مقاله: 132 |