
تعداد نشریات | 13 |
تعداد شمارهها | 623 |
تعداد مقالات | 6,502 |
تعداد مشاهده مقاله | 8,643,733 |
تعداد دریافت فایل اصل مقاله | 8,240,091 |
پاسخ رویشی نونهال حرا (Avicennia marina (Forssk.) Vierh.) به سطوح مختلف نور و آبیاری در دو پریود زمانی در نهالستان | ||
پژوهشهای علوم و فناوری چوب و جنگل | ||
دوره 31، شماره 2، تیر 1403، صفحه 111-129 اصل مقاله (795.9 K) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/jwfst.2024.22433.2062 | ||
نویسندگان | ||
مریم مصلحی* 1؛ مرضیه رضایی2؛ افسانه محبی3 | ||
1استادیار پژوهش، بخش تحقیقات منابع طبیعی، مرکز تحقیقات کشاورزی و منابع طبیعی استان هرمزگان، سازمان تحقیقات، آموزش و ترویج کشاورزی، بندرعباس، ایران. | ||
2استادیار، گروه مهندسی منابع طبیعی، دانشکده کشاورزی و منابع طبیعی دانشگاه هرمزگان، هرمزگان، بندرعباس، ایران | ||
3دانش آموخته کارشناسی ارشد ، مهندسی منابع طبیعی، مدیریت و کنترل بیابان، دانشگاه هرمزگان، بندرعباس، ایران. | ||
چکیده | ||
سابقه و هدف: برای کاهش مصرف آب و تولید نهال مناسب حرا در نهالستان، آگاهی کامل از نیازهای رویشگاهی این گونه در دو مرحله رویشی و واکنش رویشی نونهال حرا در نهالستان در طول زمان ضرورت دارد. بنابراین هدف از این تحقیق، بررسی درصد جوانهزنی و عکسالعمل رویشی نونهال حرا در نهالستان به سطوح مختلف نور، آبیاری و اثرات متقابل آنها در دو دوره رویشی سهماهه میباشد. مواد و روشها: پروپاگولها پس از جمعآوری از 30 درخت مادری کاملأ سالم حرا در تابستان 1401، در گلدانهای پلاستیکی در 5 دسته سهتایی در قالب طرح آماری فاکتوریل در نهالستان غیرساحلی کشت شد و تیمار آبیاری در 4 سطح (دو بار در روز، یک بار در روز، یک روز درمیان و دو روز در میان) و نور در پنج سطح 0، 25، 50، 75 و 100 درصد نور، بر روی پروپاگولها اجرا شد. به منظور بررسی تغییر رفتار رویشی نهالها در طول زمان به نور و رژیم آبیاری، قطر یقه، ارتفاع و تعداد برگ نهال پس از دوبرگی شدن، در سه ماهگی و شش ماهگی با استفاده ازکولیس دیجیتال و خطکش اندازهگیری و از تفاضل دورههای مختلف، میزان رویش در هر مرحله محاسبه و با استفاده از آزمون GLM در سطح 95 درصد آنالیز شد. یافتهها: نتایج نشان داد درصد جوانهزنی در آبیاری دو بار در روز و روزانه و همچنین نور 50 و 75 درصد بیشترین مقدار را نسبت به سایر تیمارها داشت (05/0P≤). سطح برگ در تیمار آبیاری دوباردر روز با مقدار 83/22 سانتیمترمربع اختلاف معنیداری با سایر تیمارها داشت. کلیه صفات رویشی بهجز تعداد برگ در سه ماهه اول دارای بیشترین مقدار در سطوح مختلف نور و آبیاری بودند و در سهماهه دوم اختلاف رویش در تیمارهای مختلف کمتر شد. بر طبق نتایج رویش قطری در سه ماهه اول در تیمار آبیاری روزانه (36/0 میلیمتر) و دو بار در روز (41/0 میلیمتر) و سطح نوری 50 درصد (32/0 میلیمتر) بیشترین مقدار را داشت در حالیکه در سه ماهه دوم میزان اختلاف رویش قطری در نور 50، 75 و 25 درصد کاهش یافت. همچنین میزان رویش ارتفاعی در سه ماهه اول در تیماری آبیاری دوبار در روز با مقدار 75/4 سانتیمتر بیشترین مقدار را داشت که در سهماهه دوم کاهش یافته (41/2 سانتیمتر) و با تیمار آبیاری روزانه با مقدار 21/2 سانتیمتر در یک گروه قرار گرفتند. رویش ارتفاعی در سه ماهه اول در نور 50 درصد (48/4 سانتیمتر) و 75 درصد (34/4 سانتیمتر) بیشترین مقدار را داشتند که در سه ماهه دوم این روند تغییر کرد. برخلاف سایر خصوصیات رویشی، تعداد برگ در سه ماهه اول کمتر از سه ماهه دوم بود. نتیجهگیری: براساس نتایج بهدست آمده، در سه ماهه اول رویش نهال حرا در نهالستان به سطوح مختلف نوری و آبیاری حساستر بوده و واکنش شدیدتری به آنها نشان میدهد. بنابراین آبیاری و ایجاد سایه مناسب در سه ماهه اول رویش بسیار مهم بوده و بایستی نور 50 درصد و آبیاری دوبار در روز در اختیار نهال قرار گیرد تا رویش مطلوبی داشته یاشد ولی در نیمه دوم رویش در نهالستان میتوان فاصله آبیاری را طولانیتر و شدت نور را بیشتر نمود. | ||
کلیدواژهها | ||
واکنش رویشی نهال حرا؛ پریود؛ رویش قطری؛ رویش ارتفاعی؛ سطح برگ | ||
مراجع | ||
1.Goldberg, L., Lagomasino, D., Thomas, N., & Fatoyinbo, T. )2020(. Global declines in human-driven mangrove loss. Global Change Biology. 26 (10), 5844-5855.
2.Venkateswarlu, V., Venkatrayulu, Ch., Jaya Harsha, M. A., & Reddy, G. G. (2023). Review on mangrove restoration: Re-greening the sea coast. GSC Biological and Pharmaceutical Sciences. 22 (03), 130-143.
3.Poorter, H., Niinemets, U., Ntagkas, N., Siebenkas, A., Maenpaa, M., Matsubara, S., & Pons, T. (2019). A meta-analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance. The New Phytologist. 223, 1073-1105.
4.Forrester, D. I., Rodenfels, P., Haase, J., Härdtle, W., Leppert, K. N., Niklaus, P. A., Von Oheimb, G., Scherer-Lorenzen, M., & Bauhus, J. (2019). Tree-species interactions increase light absorption and growth in Chinese subtropical mixed-species plantations. Oecologia. 191, 421-432.
5.Guerra-Santos, J. J., Mendez-Sanchez, J. A., Alderete-Chavez, A., de la Cruz-Landero, L., & del Carmen Guevara-Carrio, E. (2015). Light intensity on two mangrove species as an indicator of regeneration in a disturbed forest in Campeche, Mexico. Transactions on Ecology and the Environmen. 199, 15-22.
6.Mansour, H. A., El Maadwy, A. I., & Mustafa, H. G. (2016). Effect of irrigation interval and cytokinin treatments on vegetative growth of Conocarpus erectus L. plants. Middle East Journal of agriculture Research, 5 (3), 324-332.
7.Da Silva, N. R., & Maiab, R. C. (2019). Evaluation of the growth and survival of mangrove seedlings under different light intensities: Simulating the effect of mangrove deforestation. Revista Árvore. 43 (3), 1-11.
8.Azad, M. D. S., Kamruzzamn, M. D., & Mamoru, K. (2020). Canopy gaps influence regeneration dynamics in cyclone affected mangrove stands in medium saline zone of the Sundarbans Bangladesh. Acta Ecologica Sinica. 41 (1), 1-8.
9.Zhu, D., Hui, D., Huang, Z., Qiao, X., Tong, S., Wang, M., Yang, Q., & Yu, S. (2021). Comparative impact of light and neighbor effect on the growth of introduced species Sonneratia apetala and native mangrove species in China: implications for restoration. J. of the Society for Ecological Restoration. pp. 1-11.
10.Janzen, D. H. (1985). Mangroves: where’s the understory? J. of Tropical Ecology. 1 (1), 89-92.
11.Moslehi, M., Yaghoobzadeh, M., Bijani, A., & Ahmadi, A. (2020). Measurement and estimation of specific leaf area, leaf dry mass and leaf area index of Rhizophora mucronata Lam. in Sirik mangrove forests. Iranian J. of Forest. 12 (3), 421-434. [In Persian]
12.Basyuni, M., Miharza, T., Sinulingga, E., Gultom, E., & Djayus, Y. (2020). The effect of parent shade on the growth and morphological characteristics in six species of mangrove seedling. Malaysia Apply Biology. 49 (2), 99-103.
13.Hajebi, A. H., Moslehi, M., & Hassani, M. (2019). Effects of species, light, and irrigation regime on vegetative growth of grey mangrove (Avicennia marina (Forssk.) Vierh.) and red mangrove (Rhizophora mucronata (Lam.)) seedlings in the nursery. Iranian J. of Forest and Poplar Research. 27 (1), 90-99.
14.Bewley, J. D., & Black, M. (1982). Physiology and bio-chemistry of seeds in relation to germination. New York: Springer-Verlag press. 2nd edition. 365p.
15.Moslehi, M., Pypker, T., Bijani, A., Ahmadi, A., & Hallaj, M. H. S. (2021). Effect of salinity on the vegetative characteristics, biomass and chemical content of red mangrove seedlings in the south of Iran. Scientia Forestalis.49 (132), e3748.
16.Amini, B., Nurrachmi, I., & Rumiyati, R. (2007). The Effects of Crude Oil on Growth and Biomass of Mangrove Bruguiera sexangula Seedling in the Intertidal Area of Dumai City. Indonesia International J. of Applied Environmental Science. 12 (3), 399-407.
17.Berger, U., Adams, M., Grimm, V., & Hildenbrandt, H. (2006). Modelling secondary succession of neotropical mangroves: Causes and consequences of growth reduction in pioneer species. Perspectives in Plant Ecology, Evolution and Systematics. 7 (4), 243-252.
18.Kristensen, E., Bouillon, S., Dittmar, T., & Marchand, C. (2008). Organic carbon dynamics in mangrove ecosystems: A review. Aquatic Botany. 89 (2), 201-219.
19.Scholander, P. F., Hammel, H. T., Hemmingsen, E., & Garey, W. (1962). Salt balance in mangroves. Plant Phisyology. 37 (6), 722-729.
20.Chen, Y. P., & Ye, Y. (2014). Early response of Avicennia marina to intertidal elevation and light level. Aquatic Botany. 111, 33-40.
21.Lopez-Hoffman, L., DeNoyer, J., Monroe, I., Shaftel, R., Anten, N., Martinez-Ramos, M., & Ackerly, D. (2006). Mangrove seedling net photosynthesis, growth and survivorship are interactively affected by salinity and light. Biotropica. 38 (5), 606-616.
22.Kramer, P. J. (1983). Plant and Soil Water Relationship. McGraw-Hill Book Company, New York, 59p.
23.Elhadi, M., Ibrahim, K., & Abdel Majid, T. (2013). Effect of different watering regimes on growth performance of five tropical trees in the nursery. Jonares. 1, 14-18.
24.Cai, Z. Q., Poorter, L., Han, Q., & Bongers, F. J. J. M. (2008). Effects of light and nutrients on seedling tropical Bauhinia lianas and trees. Tree Physiology. 28 (2), 1277-1285.
25.Ashford, A. E., & Allaway, W. G. (1995). There is a continuum of gas space in young plants of Avicennia marina. Hydrobiologia. 295, 5-11.
26.Clark, D. A., & Clark, D. B. (1992). Life history diversity of canopy and emergent trees in a Neotropical rain forest. Ecological Monographs. 62, 315-344.
27.Foster, S. A., & Janson, C. H. (1985). The relationship between seed size and establishment conditions in tropical woody plants. Ecology. 66, 773-780.
28.Martínez-Ramos, M., Álvarez-Buylla, E. & Sarukhán, J. (1989). Tree demography and gap dynamics in a tropical rain forest. Ecology. 70, 555-558.
29.Pilevar, B., Kakavand, M., Akbari, H., Ismailii, A., Soosani, J., & Mirazadi, Z. (2012). Growth and morphological responses of Mana oak (Quercus brantii) seedlings to different light levels at nursery in the first growing year. Iranian J. of Forest and Poplar Research. 20 (1), 74-83.
30.Environmental Protection (Water) Policy. (2018). Background to monitoring mangrove forest health. Queensland Government. Report. 4p.
31.Hennessy, E., & Beach, K. S. (2023). Spatial consequences of ecophysiology in a psammophytic macroalgal community beneath fringing mangrove canopies in tampa bay. The University of Tampa. | ||
آمار تعداد مشاهده مقاله: 139 تعداد دریافت فایل اصل مقاله: 183 |