
تعداد نشریات | 13 |
تعداد شمارهها | 622 |
تعداد مقالات | 6,501 |
تعداد مشاهده مقاله | 8,615,848 |
تعداد دریافت فایل اصل مقاله | 8,206,018 |
تأثیر کاربرد سدیم دودسیل بنزن سولفونات (SDBS) بر برخی ویژگیهای خاک | ||
مجله مدیریت خاک و تولید پایدار | ||
دوره 14، شماره 2، تیر 1403، صفحه 25-45 اصل مقاله (718.59 K) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/ejsms.2024.21898.2125 | ||
نویسندگان | ||
علی برزگر گنبری1؛ شاهین اوستان* 2؛ ناصر علی اصغرزاد3؛ محمدرضا نیشابوری2؛ علی لطفالهی مرکید4 | ||
1دانشآموخته کارشناسیارشد، گروه علوم و مهندسی خاک، دانشگاه تبریز، تبریز، ایران. | ||
2استاد، گروه علوم و مهندسی خاک، دانشگاه تبریز، تبریز، ایران. | ||
3استاد ، گروه علوم و مهندسی خاک، دانشگاه تبریز، تبریز، ایران. | ||
4کارشناس آزمایشگاه، گروه علوم و مهندسی خاک، دانشگاه تبریز، تبریز، ایران | ||
چکیده | ||
سابقه و هدف: سدیم دودسیل بنزن سولفونات (SDBS) بهعنوان یک سورفکتانت آنیونی از طریق آب خاکستری، لجن فاضلاب و آفتکشها وارد خاک شده و ویژگیهای فیزیکی، شیمیایی و زیستی خاک را متأثر میسازد. هدف از این مطالعه بررسی اثر SDBS بر برخی ویژگیهای شیمیایی و فیزیکی یک خاک لوم بود. مواد و روشها: در این تحقیق، اثر SDBS بهعنوان عامل بینموردی در چهار سطح (0، 01/0، 05/0 و 25/0 درصد) و اثر زمان بهعنوان متغیر درونموردی در یازده سطح (25/0، 2، 7، 14، 21، 28، 35، 49، 63، 77 و 91 روز) بر ویژگیهایpH ، EC، آهن، منگنز، روی و مس فراهم، شاخص مواد آلی محلول و کربن آلی در قالب طرح اندازهگیریهای مکرر با سه تکرار بررسی شدند. بررسی اثر کاربرد SDBS بر غلظت سولفات فراهم خاک، نسبت جذب سدیم، درصد اشباع، چگالی ظاهری و شاخص پایداری خاکدانه در قالب طرح کاملاً تصادفی، در پایان 95 روز انکوبهکردن خاکها در سه تکرار انجام شد. بدین منظور، 15 کیلوگرم خاک در12 ظرف پلیاتیلنی ریخته شد. سپس، محلول SDBS در سطوح یادشده اسپری شده و خاکها بهمدت 95 روز در دمای اتاق نگهداری گردیدند. خاک داخل ظروف با استفاده از یک صفحه مشبک به دو بخش برای نمونهبرداریهای دستنخورده (ویژگیهای فیزیکی) و دستخورده (ویژگیهای شیمیایی) تقسیم گردید. نهایتاً، ویژگیهای خاک در روزهای یاد شده مورد اندازهگیری قرار گرفتند. یافتهها: مقادیر pH و EC خاک در طی مدت انکوبهکردن برای همه سطوح SDBS بهترتیب کاهشی و افزایشی بودند. pH خاک در سطح 25/0 درصد SDBS، ابتدا بیشتر و سپس کمتر از شاهد بود. مقادیر نهایی EC خاک برای سطوح 01/0، 05/0 و 25/0 درصد SDBS (3/543، 7/693 و µS cm-1 0/786) بیشتر از شاهد (S cm-1µ 3/513) بودند. غلظت آهن فراهم برای سطوح صفر، 01/0، 05/0 و 25/0 درصد SDBS بهترتیب از 51/3، 88/3، 02/4 وmg kg-1 56/4 در شش ساعت اول انکوبهکردن به حد تقریباً ثابت mg kg-1 19/2 در روز شصت و سوم کاهش یافت. از این زمان به بعد، فقط برای دو سطح 01/0 و 05/0 درصد SDBS یک افزایش مشاهده شد. غلظت منگنز فراهم خاک نیز با زمان کاهش یافت. بااینحال، رابطه مستقیم بین غلظت فراهم این کاتیون فلزی و سطح کاربرد SDBS فقط در هفته اول انکوبهکردن مشاهده شد و بعد از آن تغییرات نامنظم بود. برعکس، این رابطه مستقیم برای فلز روی در ابتدای آزمایش وجود نداشت و فقط در ماه آخر انکوبهکردن مشاهده شد. روند کاهش و بهدنبال آن افزایش غلظت فراهم فلز برای مس نیز مشاهده شد ولی اثر متقابل SDBSو زمان معنادار نبود. غلظت فراهم هر چهار فلز با افزایش سطح SDBS افزایش یافت و این افزایش بهطور متوسط از ترتیب زیر پیروی کرد: ≈ Cu Mn < Fe < Zn. شاخص مواد آلی محلول، تغییرات غلظت SDBS در خاک را بهنحو منظمتری در مقایسه با کربن آلی خاک نشان داد. همچنین، سولفات فراهم خاک و SAR با افزایش سطح SDBS بهطور معناداری افزایش یافتند. در بین ویژگیهای فیزیکی خاک، فقط پایداری خاکدانه در تیمار 25/0 درصد SDBS بهطور معناداری کاهش یافت. نتیجهگیری: بهطورکلی، نتایج نشان داد که تاثیر افزودن SDBS بر تغییرات غلظت فراهم آهن، منگنز، روی و مس در خاک با زمان برای هر فلز متفاوت بود. لذا، تغییرات شکل فراهم یونهای فلزی در خاک بعد از افزودن آب خاکستری، نهتنها بهدلیل محتوای موجود آنها در آب خاکستری است، بلکه سورفکتانت بهتنهایی نیز قادر است این تغییرات را ایجاد کند. مقادیرEC و SAR خاک با افزایش سطح SDBS بهطور معناداری افزایش یافتند. بااینحال، پایداری خاکدانه فقط با افزودن بالاترین سطح SDBS بهطور معناداری کاهش یافت. | ||
کلیدواژهها | ||
آب خاکستری؛ پایداری خاکدانه؛ سورفکتانت؛ سولفات فراهم؛ شاخص مواد آلی محلول | ||
مراجع | ||
1.Jensen, J. (1999). Fate and effects of linear alkylbenzene sulphonates (SDBS) in the terrestrial environment. Science of the Total Environment. 226, 93-111. doi.org/ 10.1016/s0048-9697(98)00395-7.
2.Oliver-Rodríguez, B., Zafra-Gómez, A., Reis, M. S., Duarte, B. P. M., Verge, C., de Ferrer, J. A., Pérez-Pascual, M., & Vílchez, J. L. (2015). Evaluation of Linear Alkylbenzene Sulfonate (LAS) behaviour in agricultural soil through laboratory continuous studies. Chemosphere. 131, 1-8. doi.org/10.1016/j.chemosphere.2015.02.037.
3.Mohamed, R. M., Al-Gheethi A. A., Noramira, J., Chan, C. M., Amir Hashim M. K., & Sabariah, M. (2018). Effect of detergents from laundry greywater on soil properties: A preliminary study. Applied Water Science. 8, 16. doi.org/ 10.1007/ s13201-018-0664-3.
4.Ahmed, F., Ishiguro, M., & Akae, T. (2012). Influence of organic matter on the adsorption of sodium dodecylbenzene sulfonate on volcanic ash soil. Journal of Soil Science and Environmental Management. 3, 23-27. doi.org/10.5897/ JSSEM11.114. 5.Wadaan, M., & Mubarak, M. (2009). Blood chemistry changes as an evidence of the toxic effects of anionic surfactant sodium dodecyl sulfate. Asian Journal of Scientific Research. 2, 113-118. doi.org/ 10.3923/ajsr.2009.113.118.
6.Dai, S., Liu, G., Qian, Y., & Cheng, X. (2001). The sorption behavior of complex pollution system composed of aldicarb and surfactant-SDBS. Water Research. 35, 2286-2290. doi.org/ 10.1016/S0043-1354(00)00491-7.
7.Zhang, Y., Bo-Han, L., Qing-Ru, Z., Min, Z., & Ming, L. (2008). Surfactant linear alkylbenzene sulfonate effect on soil Cd fractions and Cd distribution in soybean plants in a pot experiment. Pedosphere. 18, 242-247. doi.org/10.1016/S1002-0160(08)60013-2.
8.Pinto, U., Maheshwari, B. L., & Grewal, H. (2010). Effects of greywater irrigation on plant growth, water use and soil properties. Resources, Conservation and Recycling. 54, 429-435. doi.org/10.1016/ j.resconrec.2009.09.007.
9.Gross, A., Wiel-Shafran, A., Bondarenko, N., & Ronen, Z. (2008). Reliability of small scale greywater treatment systems and the impact of its effluent on soil properties. International Journal of Environmental Studies. 65, 41-50. doi.org/10.1080/00207230701832762.
10.Misra, R. K., & Sivongxay, A. (2009). Reuse of laundry greywater as affected by its interaction with saturated soil. Journal of Hydrology. 366, 55-61. doi.org/10.1016/j.jhydrol.2008.12.010.
11.Reichman, S. M., & Wightwick, A. M. (2013). Impacts of standard and ‘low environmental impact’ greywater irrigation on soil and plant nutrients and ecology. Applied Soil Ecology. 72, 195-202.
12.Rodda, N., Salukazana, L., Jackson, S. A. F., & Smith, M. T. (2011). Use of domestic greywater for small-scale irrigation of food crops: Effects on plants and soil. Physics and Chemistry of the Earth. 36, 1051-1062. doi.org/ 10.1016/j.pce.2011.08.002. 13.de Wolf, W., & Feijtel, T. (1998). Terrestrial risk assessment for linear alkyl benzene sulfonate (LAS) in sludge-amended soils. Chemosphere. 36, 1319-1343. doi.org/10.1016/S0045-6535(97)10021-2. 14.Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. P. 383-412. In: A. Klute (Ed.). Methods of soil analysis. Part 1. SSSA, Madison, WI, USA.
15.Kirkham, M. B. (2014). Principles of soil and plant water relations. 2nd edition. Academic Press. 598 p.
16.Chapman, H. D. (1965). Cation exchange capacity. P. 891-901. In: C.A. Black (Ed.) Methods of soil analysis. Part 2. SSSA, Madison, WI, USA.
17.Rhoades, J. D. (1996). Salinity: electrical conductivity and total dissolved solids. P. 417-435. In: D.L. Sparks et al. (Eds). Methods of soil analysis. Part 3. SSSA, Madison, WI, UAS.
18.Thomas, G. W. (1996). Soil pH and soil acidity. P. 475-490. In: D.L. Sparks et al. (Eds). Methods of soil analysis. Part 3. SSSA, Madison, WI, USA.
19.Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. P. 961-1010. In: D.L. Sparks et al. (Eds). Methods of soil analysis. Part 3. SSSA, Madison, WI, USA.
20.Allison, L. E., & Moodie, C. D. (1965). Carbonates. P. 1379-1396, In: C.A. Black (Ed.). Method of soil analaysis. Part 3. SSSA, Madison, WI, USA.
21.Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal. 42, 421-428 .doi.org/ 10.2136/ sssaj1978.03615995004200030009x.
22.Deflandre, B., & Gagné, J. P. (2001). Estimation of dissolved organic carbon (DOC) concentrations in nanoliter samples using UV spectroscopy. Water Research. 35, 3057-3062. doi.org/ 10. 1016/S0043-1354(01)00024-0.
23.Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. United States Salinity Laboratory Staff. Scientific Publishers. 160 p.
24.Schulte, E., & Eik, K. (1988). Recommended sulfate-sulfur test. P. 17-20. In: W. C. Dahnke (Ed.). Recommended chemical soil test procedures for north central region. North Dakota Agricultural Experimental Station Bulletin.
25.Blake, G. R., & Hartge, K. H. (1986). Bulk density. P. 363-382, In: A. Klute (Ed.). Methods of soil analysis. Part 1. SSSA, Madison, WI, USA.
26.Kemper, W., & Rosenau, R. (1986). Aggregate stability and size distribution. P. 425–442. In: A. Klute (Ed.). Methods of soil analysis. Part 1. SSSA, Madison, WI, USA.
27.Adeli, A., Sistani, K. R., Bal’a, M. F., & Rowe, D. E. (2005). Phosphorus dynamics in broiler litter-amended soils. Communications in Soil Science and Plant Analysis. 36, 1099-1115. doi.org/ 10.1081/CSS-200056876.
28.Barrow, N. J., & Hartemink, A. E. (2023). The effects of pH on nutrient availability depend on both soils and plants. Plant and Soil. 487, 21-37. doi.org/10.1007/s11104-023-05960-5.
29.Haynes, R. J., & Swift, R. S. (1989). Effect of rewetting air-dried soils on pH and accumulation of mineral nitrogen. Journal of Soil Science. 40, 341-347. doi.org/10.1111/j.1365-2389. 1989. tb0 1278.x.
30.Wong, M., & Swift, R. S. (2003). Role of organic matter in alleviating soil acidity. P. 337-358. In: Z. Rengel (Ed.). Handbook of soil acidity. Books in soils, plants and the environment. Marcel Dekker, New York.
31.Sawadogo, B., Sou, M., Hijikata, N., Sangare, D., Maiga, A. H., & Funamizu, N. (2014). Effect of detergents from greywater on irrigated plants: Case of Okra (Abelmoschus esculentus) and Lettuce (Lactuca sativa). Journal of Arid Land. 24, 117-120.
32.Wiel-Shafran, A., Ronen, Z., Weisbrod, N., Adar, E., & Gross, A. (2006(. Potential changes in soil properties following irrigation with surfactant-rich greywater. Ecological Engineering. 26, 348-354.doi.org/ 10.1016/ j.ecoleng. 2005.12.008.
33.Barber, D. A. (1973). Effects of micro-organisms on the absorption of inorganic nutrients by plants. Pest Management Science. 4, 367-373. doi.org/10.1002/ ps.2780040314.
34.Garcia-Marco, S., & Gonzalez-Prieto, S. (2008). Short- and medium- term effects of fire and fire-fighting chemicals on soil micronutrient availability. Science of the Total Environment. 407, 297-303. doi.org/10.1016/j.scitotenv.2008.08.021.
35.Tarkashvand, M. A., Kalbasi, M., & Shariatmadari, H. (2005). Effects of converter slag on some chemical characteristics of acid soils. Journal of Water & Soil Sciences. 8 (4), 47-62. dor: 20.1001.1.24763594.1383.8.4.5.2. [In Persian]
36.Motalebifard, R., Najafi, N., & Oustan, S. (2013). Effects of zinc sulphate and monocalcium phosphate fertilizers on extractable Zn and Fe under different soil moisture conditions. Iran Agricultural Research Journal. 32, 71-88. doi.org/ 10.22099/IAR.2014.2006.
37.Mao, X., Jiang, R., Xiao, W., & Yu, J. (2015). Use of surfactants for the remediation of contaminated soils: A review. Journal of Hazardous Materials. 285, 419-435. doi.org/10.1016/j. jhazmat. 2014.12.009.
38.Yang, Y., Ratte D., Smets, B. F., Pignatello, J. J., & Grasso, D. (2001). Mobilization of soil organic matter by complexing agents and implica-tions for polycyclic aromatic hydrocarbon desorption. Chemosphere. 43, 1013-1021. doi.org/10.1016/S0045-6535(00)00498-7.
39.Hernández-Soriano, M. C., Degryse, F., & Smolders, E. (2008). Heavy metal availability in the presence of anionic surfactants. Communications in Agricultural and Applied Biological Science. 73, 157-161.
40.Yekeen, N., Manan, M. A., Idris, A. K., & Samin, A. M. (2017). Influence of surfactant and electrolyte concentrations on surfactant Adsorption and foaming characteristics. Journal of Petroleum Science and Engineering. 149, 612-622. doi.org/10.1016/j.petrol.2016.11.018.
41.Singh, A., & Turner, A. 2009. Surfactant-induced mobilisation of trace metals from estuarine sediment: Implications for contaminant bioaccessibility and remediation. Environmental Pollution. 157, 646-653. doi.org/10.1016/ j.envpol. 2008.08.012. 42.Manirakiza, E., Ziadi, N., Luce, M. St., Hamel, C., Antoun, H., & Karam, A. (2020). Changes in soil pH and nutrient extractability after co-applying biochar and paper mill biosolids. Canadian Journal of Soil Science. 102 (1), 27-38. doi.org/10.1139/CJSS-2019-0138.
43.Torres, L. G., Lopez, R. B., & Beltran, M. (2012). Removal of As, Cd, Cu, Ni, Pb, and Zn from a highly contaminated industrial soil using surfactant enhanced soil washing. Physics and Chemistry of the Earth. 37-39, 30-36. doi.org/10. 1016/j.pce.2011.02.003
44.Marx, M., Marschner, B., & Nelson, P. (2002). Short-term effects of incubated legume and grass materials on soil acidity and C and N mineralisation in a soil of north-east Australia. Australian Journal of Soil Research. 40, 1231-1241. doi.org/10.1071/SR01099.
45.Volkering, F., Breure, A., & Rulkens, W. (1997). Microbiological aspects of surfactant use for biological soil remediation. Biodegradation. 8, 401-417. doi.org/10.1023/a:1008291130109.
46.Ekmekyapar, F., & Çeltikli, D. O. (2014). Effects of linear alkylbenzene sulfonate on agricultural soil and its degradation. Fresenius Environmental Blletin. 23, 3188-3192.
47.Niyungeko, C., Liang, X., Liu, C., Zhou, J., Chen, L., Lu, Y., Tiimub, B. M., & Li, F. (2020). Effect of biogas slurry application on soil nutrients, phosphomonoesterase activities, and phosphorus species distribution. Journal of Soils and Sediments 20, 900-910. doi.org/10.1007/s11368-019-02435-y.
48.Vanguelova, E. I., Bonifacio, E., De Vos, B., Hoosbeek, M. R., Berger, T. W., Vesterdal, L., Armolaitis, K., Celi, L., Dinca, L., Kjønaas, O. J., Pavlenda, P., Pumpanen, J., Püttsepp, Ü., Reidy, B., Simončič, P., Tobin, B., & Zhiyanski, M. (2016). Sources of errors and uncertainties in the assessment of forest soil carbon stocks at different scales-review and recommendations. Environmental Monitoring and Assessment. 188, 630. doi.org/10.1007/s10661-016-5608-5.
49.Fytianos, K., Voudrias, E., & Papamichali, A. (1998). Behavior and fate of linear alkylbenzene sulfonate in different soils. Chemosphere. 36, 2741-2746. doi.org/10.1016/S0045-6535(97)10233-8.
50.Litz, N., Doering, H. W., Thiele, M., & Blume, H. P. (1987).The behavior of linear alkylbenzenesulfonate in different soils: A comparison between field and laboratory studies. Ecotoxicology and Environmental Safety. 14, 103-116. doi.org/10.1016/0147-6513(87)90053-4.
51.Herrick, J., Whitford, W., De Soyza, A., Van Zee, J., Havstad, K., Seybold, C., & Walton, M. (2001). Field soil aggregate stability kit for soil quality and rangeland health evaluations. Catena. 44, 27-35. doi.org/10.1016/S0341-8162 (00)00173-9.
52.Mbagwu, J. S. C., Piccolo, A., & Mbila, M. O. (1993). Impact of surfactants on aggregate and colloidal stability of two tropical soils. Soil Technology. 6, 203-213. doi.org/10.1016/0933-3630 (93)90009-4. 53.Loch, R. J. (1994). A method for measuring aggregate water stability with relevance to surface seal development. Australian Journal of Soil Research,32, 687-700. doi.org/10.1071/SR9940687.
54.Miókovics, E., Széplábi, G., Makó, A., Hernádi, H., & Hermann, T. (2011). Effects of surfactants on the aggregate stability of soils. Hungarian Journal of Industry and Chemistry. 39, 127-131. doi.org/10.1515/396. | ||
آمار تعداد مشاهده مقاله: 217 تعداد دریافت فایل اصل مقاله: 116 |