
تعداد نشریات | 13 |
تعداد شمارهها | 622 |
تعداد مقالات | 6,489 |
تعداد مشاهده مقاله | 8,609,305 |
تعداد دریافت فایل اصل مقاله | 8,200,302 |
بررسی اثر نمکهای فلزی بر برخی خصوصیات بیوچار ساقه پنبه | ||
مجله پژوهشهای حفاظت آب و خاک | ||
دوره 31، شماره 1، فروردین 1403، صفحه 153-170 اصل مقاله (617.63 K) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/jwsc.2024.21551.3666 | ||
نویسندگان | ||
ابراهیم محمودی1؛ حمید نیک نهاد قرماخر* 2؛ سوسن خسرویار3؛ محمد رحیم فروزه4 | ||
1دانشجوی دکتری گروه مدیریت مرتع، دانشکده مرتع و آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران. | ||
2نویسنده مسئول، دانشیار گروه مدیریت مرتع، دانشکده مرتع و آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران | ||
3دانشیار واحد قوچان، دانشگاه آزاد اسلامی، قوچان، ایران. | ||
4دانشیار گروه مدیریت مرتع، دانشکده مرتع و آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران. | ||
چکیده | ||
سابقه و هدف: کاربرد سوختهای فسیلی و تغییر کاربری اراضی سبب افزایش فاجعه بار کربن در اتمسفر شده است و کاهش کیفیت خاک، گرمایش جهانی و تغییر اقلیم را بدنبال داشته است. کمبود ماده آلی، شوری و قلیایی بودن خاک، سه محدودیت مهم خاکهای مراتع قشلاقی ایران است. بیوچار، یک ماده غنی از کربن است که طی فرایند پیرولیز از مواد اولیه حاوی کربن در دمای بالا و شرایط تقریباً بدون اکسیژن تولید میشود و بهمنظور بهبود کیفیت خاک، ترسیب کربن و حذف آلایندهها از محیطزیست استفاده میشود. بیوچار را میتوان به منظور کاربردهای خاص یا نیل به نتایجی بخصوص، مهندسی طراحی نمود. افزایش درصد کربن پایدار و بهبود خصوصیات فیزیکی- شیمیایی بیوچارهای مهندسی شده میتواند نقش مهمی در ترسیب کربن و اصلاح خصوصیات خاکهای مراتع قشلاقی ایفا نماید. مواد و روشها: ساقه پنبه پس از شستشو و خشک شدن به قطعات کمتر از ۲ سانتیمتر خرد گردید. آنگاه به مدت ۴ ساعت در محلول با غلظت ۲۰ درصد نمکهای فلزی کلرید کلسیم، کلرید منیزیم و کلرید آهن غوطه ور شده، دوباره خشک گردید. سپس، در کوره الکتریکی و در دماهای ۳۰۰، ۴۰۰، ۵۰۰، ۶۰۰ و۷۰۰ درجه سانتیگراد و با زمان ماندگاری دو ساعت، ۲۰ بیوچار شاهد و مهندسی شده از ساقه های پنبه تیمار شده با نمک های فلزی مختلف و تیمار نشده تولید شده، درصد عملکرد، درصد کربن آلی، درصد کربن پایدار، اسیدیته، و هدایت الکتریکی آنها اندازهگیری شد و نسبت وزن کربن پایدار به وزن ماده اولیه نیز، محاسبه گردید. تجزیه و تحلیل آماری در نرم افزار SPSS نسخه ۱۶ با استفاده از روش تجزیه واریانس واریانس یکطرفه و آزمون توکی انجام شد. یافتهها: با افزایش دمای پیرولیز در تمامی بیوچارها (مهندسی شده و شاهد) روند کاهشی عملکرد مشاهده گردید بطوریکه بیشترین درصد عملکرد آنها در دما پیرولیز ۳۰۰ درجه سانتیگراد مشاهده شد. بالاترین درصد عملکرد (۲۰/۵۰ درصد) در بیوچار تیمار شده با کلرید آهن تولید شده در دمای ۳۰۰ درجه سانتیگراد بدست آمد. بیشترین میزان کربن آلی (۹۷/۵۰ درصد) و کربن پایدار (۵۷/۹۹ درصد) به ترتیب در بیوچارهای شاهد تولید شده در دمای ۵۰۰ درجه سانتیگراد و بیوچار تیمار شده با کلرید آهن تولید شده در دمای ۷۰۰ درجه سانتیگراد به دست آمد. بیشترین افزایش در نسبت وزن کربن پایدار به وزن ماده اولیه در بیوچار تیمار شده باکلرید آهن تولید شده در دمای ۳۰۰ درجه سانتیگراد مشاهده شد. کمترین و بیشترین قابلیت هدایت الکتریکی (۱/۱ و ۴۳/۷ دسیزیمنس یر متر) در بیوچار شاهد تولید شده در دمای ۳۰۰ درجه سانتیگراد و بیوچار تیمار شده با کلرید کلسیم تولید شده در دمای ۷۰۰ درجه سانتیگراد به دست آمد. بیشترین و کمترین اسیدیته (۸۳/۹ و ۶۰/۵) در بیوچار شاهد تولیدشده در دمای ۷۰۰ درجه سانتیگراد و بیوچار تیمار شده با کلرید آهن تولید شده در دمای ۳۰۰ درجه سانتیگراد مشاهده شد. نتیجهگیری: با توجه به محدودیتهای موجود در خاک مراتع قشلاقی ایران و خصوصیات بیوچارهای شاهد و اصلاح شده به همراه انرژی لازم برای تولید آنها، بیوچار تولید شده از ساقه پنبه تیمار شده با نمک کلرید آهن در دما۳۰۰ درجه سانتیگراد دارای بیشترین عملکرد و کربن پایدار بالایی بوده، پایینترین اسیدیته و هدایت الکتریکی قابل قبولی دارد. لذا، به منظور استفاده در پروژههای ترسیب کربن و بوته کاری در مراتع قشلاقی ایران توصیه میشود. | ||
کلیدواژهها | ||
نمکهای فلزی؛ بیوچار؛ ساقه پنبه؛ ترسیب کربن | ||
مراجع | ||
1.Ehsani, S. M., Niknahad-Gharmakher, H., Motamedi, J., Akbarlou, M., & Karkaj, E. S. (2021). Effect of Wheat Straw Biochar and Lignite on Nutritional Value of Nitraria schoberi and Astragalus podolobus in Greenhouse Condition. Journal of Rangeland Science. 11 (1), 44-53.2.El-Naggar, A., El-Naggar, A. H., Shaheen, S. M., Sarkar, B., Chang, S. X., Tsang, D. C. W., Rinklebe, J., & Ok, Y. S. (2019). Biochar composition-dependent impacts on soil nutrient release, carbon mineralization, and potential environmental risk: a review. Journal of environmental management. 241, 458-467.3.Hossain, M. Z., Bahar, M. M., Sarkar, B., Donne, S. W., Ok, Y. S., Palansooriya, K. N., Kirkham, M. B., Chowdhury, S., & Bolan, N. (2020). Biochar and its importance on nutrient dynamics in soil and plant. Biochar. 2, 379-420.4.Khademi, F. M., & Mahmoudabadi, M. (2018). The Effect of Different Pistachio Wastes Biochar Application on Some Fertility Properties of a Loam Soil. Iranian Journal of Soil and Water Research. 50 (1), 231-246. [In Persian]
5.Liu, B., Liu, Q., Wang, X., Bei, Q., Zhang, Y., Lin, Z., Liu, G., Zhu, J., Hu, T., Jin, H., Wang, H., Sun, X.M., Lin, X., & Xie, Z. (2020). A fast chemical oxidation method for predicting the long-term mineralization of biochar in soils. Science of the Total Environment. 718, 137390.6.Chu, G., Zhao, J., Huang, Y., Zhou, D., Liu, Y., Wu, M., & Steinberg, C. E. (2018). Phosphoric acid pretreatment enhances the specific surface areas of biochars by generation of micropores. Environmental Pollution. 240, 1-9.7.Chen, L., Wang, X., Yang, H., Lu, Q., Li, D., Yang, Q., & Chen, H. (2015). Study on pyrolysis behaviors of non-woody lignins with TG-FTIR and Py-GC/MS. Journal of Analytical and Applied Pyrolysis. 113, 499-507.8.Li, F., Gui, X., Ji, W., & Zhou, C. (2020). Effect of calcium dihydrogen phosphate addition on carbon retention and stability of biochars derived from cellulose, hemicellulose, and lignin. Chemosphere. 251, 126335.9.Mašek, O., Buss, W., Brownsort, P., Rovere, M., Tagliaferro, A., Zhao, L., Gao, X., & Xu, G. (2019). Potassium doping increases biochar carbon sequestration potential by 45%, facilitating decoupling of carbon sequestration from soil improvement. Scientific reports. 9 (1), 1-8.10.Xiao, R., Wang, J. J., Gaston, L. A., Zhou, B., Park, J. H., Li, R., Dodla, S. K., & Zhang, Z. (2018). Biochar produced from mineral salt-impregnated chicken manure: Fertility properties and potential for carbon sequestration. Waste Management. 78, 802-810.11.Al Afif, R., Anayah, S. S., & Pfeifer, C. (2020). Batch pyrolysis of cotton stalks for evaluation of biochar energy potential. Renewable Energy. 147, 2250-2258.12.Beheshti, M., Alikhani, H. Motesharezade, B., & Mohammadi, L. (2016). Quality Variations of Biochar Produced from Cow Manure during Slow Pyrolysis Process and at Different Temperatures. 47 (2), 259-267.13.Beheshti, M., & Alikhani, H. (2016). Changes in quality of wheat straw produced during slow pyrolysis process at different temperatures. Journal of Agricultural Science and Sustainable Production. 26 (2), 189-201.14.Mahmoudian Choplou, A., Niknahad Gharmakher, H., & Yousefi, H. (2020). Biochar production from peach trees pruned foliage and its qualitative properties at different temperatures. Journal of Water and Soil Conservation. 27 (3), 105-124. [In Persian]
15.Han, L., Sun, K., Yang, Y., Xia, X., Li, F., Yang, Z., & Xing, B. (2020). Biochar’s stability and effect on the content, composition and turnover of soil organic carbon. Geoderma. 364, 114184.16.Leng, L., & Huang, H. (2018). An overview of the effect of pyrolysis process parameters on biochar stability. Bioresource Technology. 270, 627-642.17.Ren, N., Tang, Y., & Li, M. (2018). Mineral additive enhanced carbon retention and stabilization in sewage sludge-derived biochar. Process Safety and Environmental Protection. 115, 70-78.19.Almutairi, A. A., Ahmad, M., Rafique, M. I., & Al-Wabel, M. I. (2023). Variations in composition and stability of biochars derived from different feedstock types at varying pyrolysis temperature. Journal of the Saudi Society of Agricultural Sciences. 22 (1), 25-34.20.Parichehre, M., SadeghZadeh, F., Bahmanyar, M., & Ghajar Sepanlu, M. (2017). Effects of Rice Straw and Dicer Biochars on Chemical Characteristics of Clay-Loam, Saline- Sodic soil. Water and Soil Science. 27 (4), 49-61.21.Schaffer, S., Pröll, T., Al Afif, R., & Pfeifer, C. (2019). A mass-and energy balance-based process modelling study for the pyrolysis of cotton stalks with char utilization for sustainable soil enhancement and carbon storage. Biomass and Bioenergy. 120, 281-290.22.Zolfi Bavariani, M., Ronaghi, N., Karimian, N., & Yasrebi, J. (2016). Effect of Poultry Manure Derived Biochars at Different Temperatures on Chemical Nan, H., Zhao, L., Yang, F., Liu, Y., Xiao, Z., Cao, X., & Qiu, H. (2020).23Properties of a Calcareous Soil. Water andSoilScience.20 (75), 73-86. [In Persian]. Different alkaline minerals interacted with biomass carbon during pyrolysis: Which one improved biochar carbon sequestration. Journal of Cleaner Production. 255, 120162.25.Khallizadeh, J., Dordipour, E., Baranimotlagh M., & Gharanjiki A. (2020). Effect of iron impregnated wheat straw and particleboard biochar on the iron uptake and growth of two soybean cultivars in a calcareous soil. Journal of Soil Management and Sustainable. The effect of pyrolysis temperature on the characteristics of biochar, pyroligneous acids, and gas prepared from cotton26.Cheng, J., Hu, S. C., Sun, G. T., Geng, Z. C., & Zhu, M. Q. (2021).10 (1), 83-100. [In Persian] stalk through a polygeneration process. Industrial Crops and Products. 170, 113690.27.Zhao, L., Zheng, W., Mašek, O., Chen, X., Gu, B., Sharma, B. K., & Cao, X. (2017). Roles of phosphoric acid in biochar formation: synchronously improving carbon retention and sorption capacity. Journal of environmental quality. 46 (2), 393-401.28.Khajavi-Shojaei, Sh., Moezze, A., Norouzi Masir, M., & Taghavi-Zahedkolaei, M. (2020). Evaluation of Nitrate Sorption Potential from Aqueous Solution Using Common Reed-Iron Modified Biochar. Journal of Water and Soil Conservation. 51 (11), 2853-2864. [In Persian] 29.Ververis, C., Georghiou, K., Christodoulakis, N., Santas, P., & Santas, R. (2004). Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Industrial crops and products. 19 (3), 245-254.30.Wang, Z., Xie, L., Liu, K., Wang, J., Zhu, H., Song, Q., & Shu, X. (2019). Co-pyrolysis of sewage sludge and cotton stalks. Waste Management. 89, 430-438.31.Sakhi, F., Mohammadi, H., & Fatahi Ardakanii, A. (2020). Effective factors on the type of sale contract of agricultural products (case study: cotton product of Gonbad Kavous city). Journal of Agricultural Arrekhi, A., Niknahad Gharmakher, H., Bachinger, J., Bloch, R., & Hufnagel, J. (2021). Forage Quality of Salsola . Golestan Province, Iran. Journal of Rangeland Science. 11 (1), 76-88.34.Ahmed, Fturcomanica(Litv) in Semi-arid Region of . A., Abdel-Moein, N. M., Mohamed, A. S., & Ahmed, S. E. (2010). Biochemical studies on some cotton by products Part I-Chemical constituents and cellulose extraction of Egyptian cotton stalks.Gomishan,Economics Research. 12 (45), 1-24. [In Persian]
32 Journal of American Science. 6 (12), 1306-1313.35.He, X., Liu, Z., Niu, W., Yang, L., Zhou, T., Qin, D., Niu, Z., & Yuan, Q. (2018). Effects of pyrolysis temperature on the physicochemical properties of gas and biochar obtained from pyrolysis of crop residues. Energy. 143, 746-756.36.Wang, Y., Hu, Y., Zhao, X., Wang, S., & Xing, G. (2013). Comparisons of biochar properties from wood material and crop residues at different temperatures and residence times. Energy and Fuels. 27 (10) 5890-5899.37.Tavakoly, E., Ghasemi, A., & Motaghian, H. (2023). The Effect of Walnut Wood Biochar and Bentonite on Electrical Conductivity and Soil Permeability. J. of New Researches in Sustainable Water Engineering. 1 (2), 145-157. [In Persian] | ||
آمار تعداد مشاهده مقاله: 125 تعداد دریافت فایل اصل مقاله: 158 |