
تعداد نشریات | 13 |
تعداد شمارهها | 622 |
تعداد مقالات | 6,489 |
تعداد مشاهده مقاله | 8,610,004 |
تعداد دریافت فایل اصل مقاله | 8,200,552 |
ارزیابی هزینه چرخه حیات و انرژی بومنظامهای تولید سویا در استان مازندران | ||
مجله تولید گیاهان زراعی | ||
دوره 16، شماره 4، دی 1402، صفحه 169-198 اصل مقاله (2.17 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/ejcp.2024.21649.2598 | ||
نویسندگان | ||
فائزه محمدی کشکا1؛ زینالعابدین طهماسبی سروستانی* 2؛ همت اله پیردشتی3؛ هما حسینزاده بندبافها4 | ||
1دانشجوی دکتری زراعت، دانشگاه تربیت مدرس، تهران | ||
2دانشیار، گروه زراعت، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران | ||
3استاد، گروه زراعت، پژوهشکده ژنتیک و زیستفناوری کشاورزی طبرستان، دانشگاه علوم کشاورزی و منابع طبیعی ساری | ||
4دانشآموخته دکتری مهندسی مکانیزاسیون کشاورزی، دانشکده مهندسی و فناوری کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران | ||
چکیده | ||
سابقه و هدف: انرژی بهدلیل هزینهها و امنیت عرضه، عامل محدودکننده پایداری کشاورزی است. بخش کشاورزی بهعنوان یکی از بزرگترین تأمینکنندگان غذای جهان، در دوران اخیر با گرایش به افزایش مصرف انرژی منجر به افزایش هزینههای تولید و تأثیرات منفی بر امنیت غذایی و نگرانیهای زیستمحیطی شده که جهت غلبه بر این چالشهای پیش رو، برقراری تعادل بین تقاضا و عرضه انرژی در سامانههای کشاورزی و همچنین بررسی عملکرد اقتصادی آنها ضروری است. بهاین ترتیب با در نظر داشتن این مهم که سویا [Glycine max (L.) Merril] گیاهی مهم در برقراری امنیت غذایی است؛ پژوهشی در سال 1398 بهمنظور تحلیل جریان انرژی و بررسی اقتصادی هزینههای تولید سویا در سطح استان مازندران انجام شد. مواد و روشها: بهمنظور ارزیابی کارایی اقتصادی و الگوی مصرف انرژی در مزارع سویا، اطلاعات موردنیاز بهصورت مراجعه حضوری و گفتگوی مستقیم با 301 سویاکار جمعآوری شد. ورودیهایی که برای برآورد کارایی انرژی هر هکتار زراعت سویا مورد استفاده قرار گرفتند شامل سوختهای فسیلی، ماشینآلات، نیروی انسانی، بذر، آب آبیاری، الکتریسیته، کودها و سموم شیمیایی بودند. دانه سویا تولیدی نیز بهعنوان منبع انرژی خروجی در نظر گرفته شد. برای ارزیابی کارایی اقتصادی تولید سویا از رویکرد هزینهیابی چرخه حیات (LCC) استفاده شد که بهاین منظور، دروازه مزرعه بهعنوان مرز سامانه و یک هکتار مزرعه سویا بهعنوان واحد پایه برای تمام تجزیه و تحلیلها در نظر گرفته شد. هزینههای اجتماعی انتشارات علاوهبر هزینههای ثابت و متغیر تولید که در بیشتر پژوهشها به آنها پرداخته میشود؛ ارزیابی و مورد تجزیه و تحلیل قرار گرفتند. در پژوهش حاضر، هزینههای اجتماعی انتشار آلایندهها در بومنظامهای تولید سویا شامل دو بخش: (1) انتشارات در مزرعه و (2) آلایندههای ناشی از تولید برق بوده که با استفاده از ضرایب استاندارد تعیینشده در مطالعات قبلی برآورد شدند. یافتهها: بر اساس نتایج، سوخت دیزل، کودهای شیمیایی نیتروژنه و بذر مصرفی بهترتیب با 47/90، 19/61 و 13/53 درصد بیشترین سهم از کل انرژی نهادههای مصرفی در تولید سویا را دارا بودند. میانگین بهرهوری انرژی برای سویا تولیدی در استان مازندران معادل 0/16 کیلوگرم بر مگاژول محاسبه شده که از این نظر، شهرستان گلوگاه با 0/25 کیلوگرم بر مگاژول بهترین و آمل با 0/11 کیلوگرم بر مگاژول بدترین وضعیت را نسبت به سایر شهرستانهای تحت بررسی داشتند. از نظر نوع انرژی مصرفی، نتایج نشان داد که تولید فعلی سویا در استان مازندران بهدلیل وابستگی زیاد به منابع انرژی تجدیدناپذیری چون سوخت دیزل و کودهای شیمیایی نیتروژنه پایدار نیست. هزینه چرخه حیات تولید سویا در استان مازندران که شامل هزینههای متغیر، ثابت و اجتماعی حاصله از انتشارات بوده نیز بهطور متوسط به میزان 327/90 دلار بر هکتار برآورد شده که در این بین هزینههای متغیر با 299/52 دلار بر هکتار (یعنی حدود 91 درصد) سهم بالایی در تولید سویای منطقه داشته است. متوسط دستمزد پرداختی به صاحبان ادوات و ماشینآلات کشاورزی با 141/85 دلار بر هکتار (معادل 47/36 درصد) اولین نهاده و نیروی کار انسانی با 85/77 دلار بر هکتار (معادل 28/64 درصد) دومین نهاده با بیشترین هزینه در تولید بودند که در مجموع حدود 69 درصد از کل هزینه تولید (LCC) سویا را به خود اختصاص دادهاند. نشر دیاکسیدکربن با 41/16 درصد، سهم عمدهای در هزینه اجتماعی حاصله از انتشارات (7/38 دلار بر تن) داشته که این هزینه بهدلیل مقادیر بالای انتشار آن در پی احتراق سوخت دیزل و مصرف کود اوره در مزرعه بود. نتیجهگیری: در مجموع نتایج حاصله از پیمایش 301 مزرعه تحت بررسی نشان داد که تولید سویا در استان مازندران با متوسط کارایی انرژی 2/43، به لحاظ بیلان انرژی توجیهپذیر و با نسبت سود به هزینه 1/86 محصولی سودآور در کشاورزی منطقه میباشد. | ||
کلیدواژهها | ||
انرژی تجدیدناپذیر؛ بهرهوری اقتصادی؛ هزینه اجتماعی انتشارات؛ کارایی انرژی؛ نیتروز اکسید | ||
مراجع | ||
12.Šarauskis, E., Romaneckas, K., Jasinskas, A., Kimbirauskienė, R. & Naujokienė, V. (2020). Improving energy efficiency and environmental mitigation through tillage management in faba bean production. Energy, 209, 118453. https://doi.org/10. 1016/j.energy.2020.118453
20.Mohamad, R.S., Verrastro, V., Cardone, G., Bteich, M.R., Favia, M., Moretti, M. & Roma, R. (2014). Optimization of organic and conventional olive agricultural practices from a life cycle assessment and life cycle costing perspectives. Journal of Cleaner Production, 70, 78-89. https://doi.org/10.1016/j.jclepro.2014.02.033
21.Reddy, V.R., Kurian, M. & Ardakanian, R. (2015). Life-cycle cost approach for management of environmental resources: a primer. Springer, Cham, 73 p.
22.Klöpffer, W. (2008). Life cycle sustainability assessment of products: (with Comments by Helias A. Udo de Haes, p. 95). The International Journal of Life Cycle Assessment, 13, 89-95. https://doi.org/10.1065/lca2008.02.376
28.Jirapornvaree, I., Suppadit, T. & Kumar, V. (2021). Assessing the economic and environmental impact of jasmine rice production: life cycle assessment and life cycle costs analysis. Journal of Cleaner Production, 303, 127079. https://doi.org/ 10.1016/j.jclepro.2021.127079
32.Nabavi-Pelesaraei, A., Rafiee, S., Mohtasebi, S.S., Hosseinzadeh-Bandbafha, H. & Chau, K.W. (2019). Comprehensive model of energy, environmental impacts and economic in rice milling factories by coupling adaptive neuro-fuzzy inference system and life cycle assessment. Journal of Cleaner Production, 217, 742-756. https://doi.org/10.1016/j.jclepro.2019.01.228
33.Hartman, G.L., West, E.D. & Herman, T.K. (2011). Crops that feed the world 2. soybean—worldwide production, use, and constraints caused by pathogens and pests. Food Security, 3, 5–17. https://doi.org/ 10.1007/s12571-010-0108-x
34.Ministry of Agriculture-Jahad. (2020). Annual agricultural statistics, Vol. 1. Ministry of Agriculture Planning and Economic Deputy, Iranian's Ministry of Agriculture-Jahad. Available at Web site www.maj.ir. [In Persian]
35.Cochran, W.G. (1977). Sampling techniques (3rd Edition). John Wiley and Sons: New York, USA, 442 p.
36.Kalantari, K.H. (2017). Data Processing and Analysis in Socio-Economic Research. Farhang Saba, Tehran, Iran, 402 p. [In Persian]
37.Kitani, O., Jungbluth, T., Peart, R.M. & Ramdani, A. (1999). CIGR handbook of agricultural engineering, Volume 5: Energy and biomass engineering. ASAE Publication, St Joseph, MI, 330 p.
38.Banaeian, N. & Zangeneh, M. (2011). Study on energy efficiency in corn production of Iran. Energy, 36(8), 5394-5402. https://doi.org/ 10.1016/j. energy.2011.06.052
39.Alimagham, S.M., Soltani, A., Zeinali, E. & Kazemi, H. (2017). Energy flow analysis and estimation of greenhouse gases (GHG) emissions in different scenarios of soybean production (case study: Gorgan region, Iran). Journal of Cleaner Production, 149, 621-628. https://doi.org/10.1016/j.jclepro.2017.02.118.
40.Heidari, M.D., Omid, M. & Akram, A. (2011). Energy efficiency and econometric analysis of broiler production farms. Energy, 36(11), 6536-6541. https://doi.org/10.1016 /j.energy.2011.09.011
41.Asgharipour, M.R., Mondani, F. & Riahinia, S. (2012). Energy use efficiency and economic analysis of sugar beet production system in Iran: a case study in Khorasan Razavi province. Energy, 44(1), 1078-1084. https://doi.org/ 10.1016/j.energy.2012.04.023
42.IPCC. (2006). IPCC guidelines for national greenhouse gas inventories. In: H.S. Eggleston L. Buendia K. Miwa T. Ngara & K. Tanabe (eds.). Institute for Global Environmental Strategies (IGES), Hayama, Japan. http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.htm
44.Engineering ToolBox. (2009). Combustion of fuels and nitrogen oxides (NOx) emission, [online] Available at Web site https://www.engineeringtoolbox.com/nox-emission-combustion-fuels-d_1086.html (verified 17 November 2021).
45.Majumdar, D. & Gajghate, D.G. (2011). Sectoral CO2, CH4, N2O and SO2 emissions from fossil fuel consumption in Nagpur city of central India. Atmospheric Environment, 45(25), 4170–4179. https://doi.org/10.1016 /j.atmosenv.2011.05.019
46.Ramachandra, T.V. & Shwetmala. (2012). Decentralised carbon footprint analysis for opting climate change mitigation strategies in India. Renewable and Sustainable Energy Reviews, 16, 5820–5833. https://doi.org/10.1016 j.rser.2012.05.035
47.Khoshnevisan, B., Rajaeifar, M.A., Clark, S., Shamahirband, S., Anuar, N.B., Mohd Shuib, N.L. & Gani, A. (2014). Evaluation of traditional and consolidated rice farms in Guilan Province, Iran, using life cycle assessment and fuzzy modeling. Science of The Total Environment, 481, 242–251. https://doi.org/10.1016 /j.scitotenv.2014.02.052
48.Pimentel, D. & Patzek, T.W. (2005). Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Natural Resources Research, 14(1), 65-76. https://doi.org/ 10.1007/s11053-005-4679-8
50.Ramedani, Z., Rafiee, S. & Heidari, M.D. (2011). An investigation on energy consumption and sensitivity analysis of soybean production farms. Energy, 36(11), 6340-6344. https://doi.org/ 10.1016/j.energy.2011.09.042
51.Fathi, R., Kheiralipour, K. & Azizpanah, A. (2019). Assessment of the pattern of energy consumption in dryland rape production and its environmental effects in Ilam province. Quarterly Energy Economics Review, 15(62), 155-179. [In Persian]
52.Omidmehr, Z. (2019). Comparison of energy productivity and global warming potential in rain-fed sunflower (Helianthus annuus L.) production systems. Journal of Agroecology, 11(2), 739-755. [In Persian]
53.Pirdashti, H., Pirdashti, M., Mohammadi, M., Gharavi Baigi, M. & Movagharnejad, K. (2015). Efficient use of energy through organic rice–duck mutualism system. Agronomy for Sustainable Development, 35, 1489-1497. https://doi.org/10.1007/s13593-015-0311-4
54.Janulevičius, A., Juostas, A. & Pupinis, G. (2013). Tractor’s engine performance and emission characteristics in the process of ploughing. Energy Conversion and Management, 75, 498–508. https://doi.org/ 10.1016/j.enconman.2013.06.052
55.Tabatabaeefar, A., Emamzadeh, H., Ghasemi Varnamkhasti, M., Rahimizadeh, R. & Karimi, M. (2009). Comparison of energy of tillage systems in wheat production. Energy, 34(1), 41-45. https://doi.org/10.1016 /j.energy. 2008.09.023
56.Safahani Langeroodi, A.R., Osipitan, O.A. & Radicetti, E. (2019). Benefits of sustainable management practices on mitigating greenhouse gas emissions in soybean crop (Glycine max). Science of the Total Environment, 660, 1593–1601. https://doi.org/10.1016/j.scitotenv.2019.01.074
57.Ray, J.D. & Fritschi, F.B. (2009). Soybean mineral nutrition and biotic relationships. P 29-56, In: L.R. Elsworth & W.O. Paley (eds.), Fertilizers: Properties, Applications and Effects, Nova Science Publishers, Inc., New York.
58.Rao, A.S. & Reddy, K.S. (2010). Nutrient management in soybean. P 161–190, In: G. Singh (eds.), The Soybean: Botany, Production and Uses, CAB International.
59.Fageria, N.K., Baligar, V.C. & Jones, C.A. (2011). Growth and mineral nutrition of field crops (3rd Edition). CRC press, 550 p.
60.McNeil, D.L. (2010). Biological nitrogen fixation in soybean. P 227–246, In: G. Singh (eds.). The Soybean: Botany, Production and Uses, CAB International.
61.Ohyama, T., Minagawa, R., Ishikawa, S., Yamamoto, M., Hung, N.V.P., Ohtake, N., Sueyoshi, K., Sato, T., Nagumo, Y. & Takahashi, Y. (2012). Soybean seed production and nitrogen nutrition. P 115-157, In: J.E. Board (eds), A Comprehensive Survey of International Soybean Research-Genetics, Physiology, Agronomy and Nitrogen Relationships, InTech.
62.Ozkan, B., Fert, C. & Karadeniz, C.F. (2007). Energy and cost analysis for greenhouse and open-field grape production. Energy, 32(8), 1500-1504. https://doi.org/10.1016/j.energy.2006.09.010
63.Pervanchon, F., Bockstaller, C. & Girardin, P. (2002). Assessment of energy use in arable farming systems by means of an agro-ecological indicator: the energy indicator. Agricultural Systems, 72(2), 149-172. https://doi.org/10.1016/S0308-521X(01)00073-7
65.Mohammadi Kashka, F., Tahmasebi Sarvestani, Z., Pirdashti, H., Motevali, A. & Nadi, M. (2022a). Assessing the environmental impacts of soybean [Glycine max (L.) Merril] cultivation in the eastern and central regions of Mazandaran province using life cycle assessment. Journal of Agroecology, 14(2), 309-330. [In Persian]
66.Kazemi, H., Bourkheili, S.H., Kamkar, B., Soltani, A., Gharanjic, K. & Nazari, N.M. (2016). Estimation of greenhouse gas (GHG) emission and energy use efficiency (EUE) analysis in rainfed canola production (case study: Golestan province, Iran). Energy, 116, 694-700. https://doi.org/10.1016/j.energy.2016.10.010
67.Rathke, G.W. & Diepenbrock, W. (2006). Energy balance of winter oilseed rape (Brassica napus L.) cropping as related to nitrogen supply and preceding crop. European Journal of Agronomy, 24(1), 35-44. https://doi.org/10.1016/j.eja.2005.04.003
68.Signor, D. & Cerri, C.E.P. (2013). Nitrous oxide emissions in agricultural soils: a review. Pesquisa Agropecuária Tropical, 43(3), 322–338. https://doi.org/10.1590/S1983- 40632013000300014 69.Mohammadi Kashka, F., Tahmasebi Sarvestani, Z.A., Pirdashti, H., Motevali, A. & Nadi, M. (2022b). Evaluation of management factors affecting soybean [Glycine max (L.) Merril] yield gap in Mazandaran province using comparative performance analysis (CPA). Crop Production, 15(1), 73-100. [In Persian]
| ||
آمار تعداد مشاهده مقاله: 396 تعداد دریافت فایل اصل مقاله: 210 |