- Consentino, B. B., Aprile, S., Rouphael, Y., Ntatsi, G., De Pasquale, C., Iapichino, G., … Sabatino, L. (2022). Application of PGPB combined with variable n doses affects growth, yield-related traits, N-fertilizer efficiency and nutritional status of lettuce grown under controlled condition. Agronomy, 12(2), 236. https://doi.org/10.3390/agronomy12020236.
- Sahoo, R. K., Ansari, M. W., Dangar, T. K., Mohanty, S., & Tuteja, N. (2014). Phenotypic and molecular characterisation of efficient nitrogen-fixing Azotobacter strains from rice fields for crop improvement. Protoplasma, 251, 511–523.
- Arora, M., Saxena, P., Abdin, M. Z., & Varma, A. (2018). Interaction between Piriformospora indica and Azotobacter chroococcum governs better plant physiological and biochemical parameters in Artemisia annua plants grown under in vitro conditions. Symbiosis, 75, 103–112.
- Mousavi, S. S., Karami, A., & Maggi, F. (2022). Photosynthesis and chlorophyll fluorescence of Iranian licorice (Glycyrrhiza glabra) accessions under salinity stress. Frontiers in Plant Science, 13, 984944. https://doi.org/10.3389/fpls.2022.984944.
- Romero-Perdomo, F., Abril, J., Camelo, M., Moreno-Galván, A., Pastrana, I., Rojas-Tapias, D. F., & Bonilla, R. (2017). Azotobacter chroococcum as a potentially useful bacterial biofertilizer for cotton (Gossypium hirsutum): Effect in reducing N fertilization. Revista Argentina de Microbiologia, 49(4), 377–383. https://doi.org/10.1016/j.ram.2017.04.006.
- Wani, S. A., Chand, S., Wani, M. A., Ramzan, M., & Hakeem, K. R. (2016). Azotobacter chroococcum–a potential biofertilizer in agriculture: an overview. Soil Science: Agricultural and Environmental Prospectives, 333–348.
- Aasfar, A., Bargaz, A., Yaakoubi, K., Hilali, A., Bennis, I., Zeroual, Y., & Meftah Kadmiri, I. (2021). Nitrogen fixing Azotobacter species as potential soil biological enhancers for crop nutrition and yield stability. Frontiers in Microbiology, 12, 354. https://doi.org/10.3389/fmicb.2021.628379.
- Chaudhary, D., Narula, N., Sindhu, S. S., & Behl, R. K. (2013). Plant growth stimulation of wheat (Triticum aestivum ) by inoculation of salinity tolerant Azotobacter strains. Physiology and Molecular Biology of Plants, 19, 515–519.
- Kordi, S., Salmasi, S. Z., Kolvanagh, J. S., Weisany, W., & Shannon, D. A. (2020). Intercropping system and N2 fixing bacteria can increase land use efficiency and improve the essential oil quantity and quality of sweet basil (Ocimum basilicum ). Frontiers in Plant Science, 11, 2069. https://doi.org/10.3389/fpls.2020.610026.
- Vafadar-Yengeje, L., Amini, R., & Dabbagh Mohammadi Nasab, A. (2019). Chemical compositions and yield of essential oil of Moldavian balm (Dracocephalum moldavica) in intercropping with faba bean (Vicia faba L.) under different fertilizers application. Journal of Cleaner Production, 239, 118033. https://doi.org/10.1016/j.jclepro.2019.118033.
- Hayashi, H., & Sudo, H. (2009). Economic importance of licorice. Plant Biotechnology, 26(1), 101–104. https://doi.org/10.5511/plantbiotechnology.26.101.
- Bahmani, M., Rafieian-Kopaei, M., Jeloudari, M., Eftekhari, Z., Delfan, B., Zargaran, A., & Forouzan, S. (2014). A review of the health effects and uses of drugs of plant licorice (Glycyrrhiza glabra L.) in Iran. Asian Pacific Journal of Tropical Disease, 4(S2), S847–S849.
- Jiang, M., Zhao, S., Yang, S., Lin, X., He, X., Wei, X., … Zhang, J. (2020). An “essential herbal medicine”—Licorice: A review of phytochemicals and its effects in combination preparations. Journal of Ethnopharmacology, 249, 112439. https://doi.org/10.1016/j.jep.2019.112439.
- Ghadiri, H., & Bagherani, T. N. (2000). Effects of scarification and temperature on germination of licorice (Glycyrrhiza glabra) seeds. Journal of Agricultural Science and Technology, 2(4), 257–262. Retrieved from http://jast.modares.ac.ir/article-23-11099-en.html
- Zhang, J., Yao, J., Ding, L., Guo, S. J., & Yang, Y. L. (2000). Study advances on the utilization of Glycyrrhiza. Grassland Turf, 89(2), 12–17.
- Karkanis, A., Martins, N., Petropoulos, S. A., & Ferreira, I. C. F. R. (2018). Phytochemical composition, health effects, and crop management of liquorice (Glycyrrhiza glabra): Α medicinal plant. Food Reviews International, 34(2), 182–203.
- Mambetnazarov, A. B., Aybergenov, B. A., Kurbaniyazova, B. J., Jumatova, R. M., Turimbetov, M. S., Sabirova, M. G., & Sabirov, G. (2021). To the development of optimal methods for licorice seeds growing (Glycyrrhiza glabra) in irrigated lands of the Republic of Karakalpakstan. In IOP Conference Series: Earth and Environmental Science (Vol. 937, p. 32102). IOP Publishing.
- Ghanbari, J., Besharati-Far, M., & khajoei-Nejad, G. (2022). Response of Seed Germination and Seedling Growth of Licorice to Chemical Scarification and Gibberellic Acid Levels. Journal of Crops Improvement, 24(4), 1311–1324. https://doi.org/10.22059/jci.2021.328615.2595. [In Persian]
- Mao, P.-S., Wang, Y.-H., Wang, X.-G., Lian, J.-J., & Huang, Y. (2008). Conditions and Stimulation for Germination in Glycyrrhiza uralensis Fisch Seeds. Agricultural Sciences in China, 7(12), 1438–1444. https://doi.org/10.1016/S1671-2927(08)60400-9.
- Liu, Y., Li, Y., Luo, W., Liu, S., Chen, W., Chen, C., … Wei, G. (2020). Soil potassium is correlated with root secondary metabolites and root-associated core bacteria in licorice of different ages. Plant and Soil, 456(1), 61–79. https://doi.org/10.1007/s11104-020-04692-0.
- Dagar, J. C., Yadav, R. K., Dar, S. R., & Ahamad, S. (2015). Liquorice (Glycyrrhiza glabra): a potential salt-tolerant, highly remunerative medicinal crop for remediation of alkali soils. Current Science, 108(9), 1683–1688. Retrieved from http://www.jstor.org/stable/24905534.
- Khaitov, B., Karimov, A., Khaitbaeva, J., Sindarov, O., Karimov, A., & Li, Y. (2022). Perspectives of Licorice Production in Harsh Environments of the Aral Sea Regions. International Journal of Environmental Research and Public Health, 19(18), 11770. https://doi.org/10.3390/ijerph191811770.
- Babu, S., Singh, R., Yadav, D., Rathore, S. S., Raj, R., Avasthe, R., … Singh, V. K. (2022). Nanofertilizers for agricultural and environmental sustainability. Chemosphere, 292, 133451. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.133451.
- Sahandi, M. S., Mehrafarin, A., Badi, H. N., Khalighi-Sigaroodi, F., & Sharifi, M. (2019). Improving growth, phytochemical, and antioxidant characteristics of peppermint by phosphate-solubilizing bacteria along with reducing phosphorus fertilizer use. Industrial Crops and Products, 141, 111777.
- Thilagar, G., Bagyaraj, D. J., & Rao, M. S. (2016). Selected microbial consortia developed for chilly reduces application of chemical fertilizers by 50% under field conditions. Scientia Horticulturae, 198, 27–35. https://doi.org/10.1016/j.scienta.2015.11.021.
- Baligar, V. C., Fageria, N. K., & He, Z. L. (2001). Nutrient use efficiency in plants. Communications in Soil Science and Plant Analysis, 32(7–8), 921–950. https://doi.org/10.1081/CSS-100104098.
- Baligar, V. C., Fageria, N. K., & He, Z. L. (2007). Communications in Soil Science and Plant Analysis, (December 2012), 37–41. Retrieved from https://doi.org/10.1081/CSS-100104098.
- Mousavi, S. S., Karami, A., Saharkhiz, M. J., Etemadi, M., & Zarshenas, M. M. (2022). Evaluation of metabolites in Iranian Licorice accessions under salinity stress and Azotobacter inoculation. Scientific Reports, 12(1), 15837. https://doi.org/10.1038/s41598-022-20366-6.
- Chauhan, H., & Bagyaraj, D. J. (2015). Inoculation with selected microbial consortia not only enhances growth and yield of French bean but also reduces fertilizer application under field condition. Scientia Horticulturae, 197, 441–446. https://doi.org/10.1016/ j.scienta.2015.10.001.
- Hosseinzadah, F., Satei, A., & Ramezanpour, M. R. (2011). Effects of mycorhiza and plant growth promoting rhizobacteria on growth, nutrients uptake and physiological characteristics in Calendula officinalis L. Middle East Journal of Scientific Research, 8(5), 947–953.
- Nosheen, A., Bano, A., Naz, R., Yasmin, H., Hussain, I., Ullah, F., … Tahir, A. T. (2019). Nutritional value of Sesamum indicum L. was improved by Azospirillum and Azotobacter under low input of NP fertilizers. BMC Plant Biology, 19(1), 466. https://doi.org/10.1186 /s12870-019-2077-3.
- Egamberdieva, D., & da Silva, J. A. T. (2015). Medicinal plants and PGPR: a new frontier for phytochemicals. Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants, 287–303.
- Babakhani, V., Tohidi-Nejad, E., Khajoei-Nejad, G., & Ghanbari, J. (2022). Biomass Production and Nitrogen Use Efficiency in Dill-Fenugreek Intercropping in Response to Biofertilizers and Manure. Journal of Agricultural Science and Sustainable Production, 32(4), 1–18. https://doi.org/10.22034/saps.2022.48673.2759. [In Persian]
- Khanamani, A., Tohidi-Nejad, E., Khajoei-Nejad, G., & Ghanbari, J. (2023). Evaluation of Efficiency in Fenugreek-Black Cumin Intercropping Under Application of Growth-Promoting Bacteria and Nitrogen Fertilizer Amounts. Journal of Crops Improvement, 25(1), 159–175. https://doi.org/10.22059/jci.2022.336635.2661. [In Persian]
- Paungfoo-Lonhienne, C., Redding, M., Pratt, C., & Wang, W. (2019). Plant growth promoting rhizobacteria increase the efficiency of fertilisers while reducing nitrogen loss. Journal of Environmental Management, 233, 337–341. https://doi.org/10.1016 /j.jenvman.2018.12.052.
|