
تعداد نشریات | 13 |
تعداد شمارهها | 622 |
تعداد مقالات | 6,491 |
تعداد مشاهده مقاله | 8,611,579 |
تعداد دریافت فایل اصل مقاله | 8,200,876 |
بهبود تحمل به شوری در گیاه فلفل تند با محلول پاشی برگی سیلیسیوم | ||
پژوهشهای تولید گیاهی | ||
مقاله 6، دوره 30، شماره 4، دی 1402، صفحه 103-120 اصل مقاله (875.75 K) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/jopp.2023.21109.3021 | ||
نویسندگان | ||
ناهید جمالی1؛ فردین قنبری* 2؛ علی اصغر حاتم نیا3 | ||
1دانشآموخته کارشناسیارشد گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه ایلام، ایلام، ایران. | ||
2نویسنده مسئول، استادیار گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه ایلام، ایلام، ایران | ||
3استادیار گروه زیستشناسی، دانشکده علوم، دانشگاه ایلام، ایلام، ایران | ||
چکیده | ||
سابقه و هدف: شوری یکی از عوامل تنش زای غیرزیستی است که خسارات زیادی به تولید محصولات کشاورزی در سراسر جهان وارد میکند. استراتژیهای مختلفی برای کاهش تأثیر منفی شوری بر گیاهان و تداوم رشد و نمو گیاهان در شرایط تنش شوری اتخاذ شده است. در مطالعه حاضر، اثر محلول پاشی سیلیسیوم بر کاهش آثار تنش شوری و مکانیسمهای فیزیولوژیکی وابسته به آن در گیاه فلفل تند بررسی شده است. مواد و روش ها: آزمایش به صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار در گلخانه دانشگاه ایلام انجام شد. تیمارهای مورد آزمایش در این تحقیق شامل سه سطح تنش شوری (شامل شاهد، 75 و 150 میلیمولار نمک NaCl) و چهار سطح سیلیسیوم (شاهد، 5/0، 1 و 2 میلیمولار) بود. در مرحله چهار برگ حقیقی تیمار سیلسیسوم به صورت محلول پاشی برگی در غلظتهای ذکر شده تا خیس شدن کامل سطح برگها اعمال شد و به فاصله یک ماه دو مرتبه دیگر تکرار شد. تیمار شوری نیز به صورت تهیه محلول NaCl و آبیاری گیاهان همراه با محلول کودی با فواصل سه روز یکبار انجام گرفت. تیمارها تا زمان میوه دهی و برداشت کامل میوهها ادامه یافت. یافته ها: در نتایج نهایی به دست آمده از این تحقیق مشخص شدکه شوری موجب کاهش معنی دار پارامترهای رشدی و عملکردی (وزن خشک ریشه و شاخساره، ارتفاع گیاه، تعداد میوه در بوته و عملکرد محصول) و همچنین کاهش محتوای رطوبت نسبی و کلروفیل شده و باعث فزایش محتوای پرولین، مالون دی آلدهید و نشت یونی در گیاه فلفل شد. نتایج نشان داد کاربرد سیلیسیم باعث کاهش آثار تنش شوری بر گیاه فلفل شد. بیشترین عملکردکل مربوط به تیمار بدون شوری با کاربرد سیلیسیوم (1 و 2 میلیمولار) بود. در همه سطوح شوری کاربرد سیلیسیوم سبب افزایش رشد و عملکردگیاه فلفل شد. این نتایج در ارتباط با افزایش محتوای رطوبت نسبی و کلروفیل، کاهش میزان پرولین، محتوای مالون دی آلدهید و نشت الکترولیت بود. نتیجه گیری: به طور کلی نتایج این تحقیق نشان داد که کاربرد سیلیسیوم به خصوص در غلظتهای یک و دو میلی مولار موجب بهبود رشد و افزایش عملکرد گیاه فلفل تند در شرایط تنش و غیر تنش شد. کاربرد خارجی سیلیسیوم، اثرات منفی شوری بر گیاه را از طریق افزایش مقدار کلروفیل و محتوای رطوبت نسبی و کاهش پرولین و مالون دی آلدهید کاهش داد. اگر چه کاربرد سیلیسیوم در شرایط بدون شوری اثرات مثبتی بر رشد و عملکرد گیاه داشت ولی در شرایط شوری اثر بخشی بیشتری داشت. بنابراین برای کاهش اثرات شوری بر رشد و عملکرد گیاه فلفل تند محلول پاشی سیلیسیوم توصیه میشود. | ||
کلیدواژهها | ||
تنش اسمزی؛ تنظیم اسمزی؛ کلروفیل؛ کلرید سدیم؛ مالون دی آلدهید | ||
مراجع | ||
1.Munns, R. & Gilliham, M. (2015). Salinity tolerance of crops–what is the cost. New phytologist, 208 (3), 668-673.
2.Munns, R. & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review in Plant Biology, 59, 651-681.
3.Miller, G. A. D., Suzuki, N., Ciftci‐Yilmaz, S. U. L. T. A. N. & Mittler, R. O. N. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, cell & Environment, 33 (4), 453-467.
4.Qadir, M., Qureshi, A. S. & Cheraghi, S. A. M. (2008). Extent and characterization of salt‐affected soils in Iran and strategies for their amelioration and management. Land Degradation & Development, 19 (2), 214-227.
5.Guntzer, F., Keller, C. & Meunier, J. D. (2012). Benefits of plant silicon for crops: a review. Agronomy for Sustainable Development, 32, 201-213.
6.Ahanger, M. A. & Ahmad, P. (2019). Role of mineral nutrients in abiotic stress tolerance: revisiting the associated signaling mechanisms. Plant signaling molecules, 269-285.
7.Wang, M., Wang, R., Mur, L. A. J., Ruan, J., Shen, Q. & Guo, S. (2021). Functions of silicon in plant drought stress responses. Horticulture Research, 8, 1-13.
8.Liang, Y., Sun, W., Zhu, Y. G. & Christie, P. (2007). Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environmental Pollution, 147 (2), 422-428.
9.Rizwan, A., Zia-ur-Rehman, M., Rizwan, M., Usman, M., Anayatullah, S., Alharby, H. F. & Ali, S. (2023). Effects of silicon nanoparticles and conventional Si amendments on growth and nutrient accumulation by maize (Zea mays L.) grown in saline-sodic soil. Environmental Research, 227, 115740.
10.de Souza Junior, J. P., de Mello Prado, R., Campos, C. N. S., Junior, G. D. S. S., Costa, M. G., de Pádua Teixeira, S. & Gratão, P. L. (2023). Silicon modulate the non-enzymatic antioxidant defence system and oxidative stress in a similar way as boron in boron-deficient cotton flowers. Plant Physiology and Biochemistry, 197, 107594.
11.Li, H., Zhu, Y., Hu, Y., Han, W. & Gong, H. (2015). Beneficial effects of silicon in alleviating salinity stress of tomato seedlings grown under sand culture. Acta Physiologiae Plantarum, 37, 1-9.
12.Yaghubi, K., Ghaderi, N., Vafaee, Y. & Javadi, T. (2016). Potassium silicate alleviates deleterious effects of salinity on two strawberry cultivars grown under soilless pot culture. Scientia Horticulturae, 213, 87-95.
13.Zhu, Y., Jiang, X., Zhang, J., He, Y., Zhu, X., Zhou, X. & Liu, Y. (2020). Silicon confers cucumber resistance to salinity stress through regulation of proline and cytokinins. Plant Physiology and Biochemistry, 156, 209-220.
14.López-Serrano, L., Calatayud, Á., López-Galarza, S., Serrano, R. & Bueso, E. (2021). Uncovering salt tolerance mechanisms in pepper plants: a physiological and transcriptomic approach. BMC Plant Biology, 21, 1-17.
15.Blum, A. & Ebercon, A. (1981). Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Science, 21 (1), 43-47.
16.Khan, M. A. H., Baset Mia, M. A., Quddus, M. A., Sarker, K. K., Rahman, M., Skalicky, M. & Hossain, A. (2022). Salinity-induced physiological changes in pea (Pisum sativum L.): Germination rate, biomass accumulation, relative water content, seedling vigor and salt tolerance index. Plants, 11 (24), 3493.
17.Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24 (1), 1-14. 18.Bates, L. S., Waldren, R. A. & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207.
19.Stewart, R. R. & Bewley, J. D. (1980). Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiology, 65 (2), 245-248.
20.Safdar, H., Amin, A., Shafiq, Y., Ali, A., Yasin, R., Shoukat, A. & Sarwar, M. I. (2019). A review: Impact of salinity on plant growth. Nature and Science, 17 (1), 34-40. 21.Trabelsi, L., Gargouri, K., Hassena, A. B., Mbadra, C., Ghrab, M., Ncube, B. & Gargouri, R. (2019). Impact of drought and salinity on olive water status and physiological performance in an arid climate. Agricultural water management, 213, 749-759.
22.Khan, A., Khan, A. L., Muneer, S., Kim, Y. H., Al-Rawahi, A. & Al-Harrasi, A. (2019). Silicon and salinity: Crosstalk in crop-mediated stress tolerance mechanisms. Frontiers in Plant Science, 10, 1429. 23.De Pascale, S., Ruggiero, C., Barbieri, G. & Maggio, A. (2003). Physiological responses of pepper to salinity and drought. Journal of the American Society for Horticultural Science, 128 (1), 48-54.
24.Navarro, J. M., Garrido, C., Carvajal, M. & Martinez, V. (2002). Yield and fruit quality of pepper plants under sulphate and chloride salinity. The Journal of Horticultural Science and Biotechnology, 77 (1), 52-57.
25.Villa-Castorena, M., Ulery, A. L., Catalán-Valencia, E. A. & Remmenga, M. D. (2003). Salinity and nitrogen rate effects on the growth and yield of chile pepper plants. Soil Science Society of America Journal, 67 (6), 1781-1789.
26.Hurtado, A. C., Chiconato, D. A., de Mello Prado, R., Junior, G. D. S. S. & Felisberto, G. (2019). Silicon attenuates sodium toxicity by improving nutritional efficiency in sorghum and sunflower plants. Plant Physiology and Biochemistry, 142, 224-233.
27.Savvas, D., Giotis, D., Chatzieustratiou, E., Bakea, M. & Patakioutas, G. (2009). Silicon supply in soilless cultivations of zucchini alleviates stress induced by salinity and powdery mildew infections. Environmental and Experimental Botany, 65 (1), 11-17.
28.Peña‐Calzada, K., Olivera‐Viciedo, D., Calero‐Hurtado, A., de Mello Prado, R., Habermann, E., Lata Tenesaca, L. F. & Lupino Gratão, P. (2023). Silicon mitigates the negative impacts of salt stress in soybean plants. Journal of the Science of Food and Agriculture, 103, 4360-4370.
29.Heidari, M. (2012). Effects of salinity stress on growth, chlorophyll content and osmotic components of two basil (Ocimum basilicum L.) genotypes. African Journal of Biotechnology, 11 (2), 379-384.
30.Trejo-Téllez, L. I., García-Jiménez, A., Escobar-Sepúlveda, H. F., Ramírez-Olvera, S. M., Bello-Bello, J. J. & Gómez-Merino, F. C. (2020). Silicon induces hormetic dose-response effects on growth and concentrations of chlorophylls, amino acids and sugars in pepper plants during the early developmental stage. PeerJ, 8, e9224.
31.Singh, P., Kumar, V., Sharma, J., Saini, S., Sharma, P., Kumar, S. & Sharma, A. (2022). Silicon supplementation alleviates the salinity stress in wheat plants by enhancing the plant water status, photosynthetic pigments, proline content and antioxidant enzyme activities. Plants, 11 (19), 2525.
32.Kong, W., Liu, F., Zhang, C., Zhang, J. & Feng, H. (2016). Non-destructive determination of Malondialdehyde (MDA) distribution in oilseed rape leaves by laboratory scale NIR hyperspectral imaging. Scientific Reports, 6 (1), 35393.
33.Ma, D., Sun, D., Wang, C., Qin, H., Ding, H., Li, Y. & Guo, T. (2016). Silicon application alleviates drought stress in wheat through transcriptional regulation of multiple antioxidant defense pathways. Journal of Plant Growth Regulation, 35, 1-10. | ||
آمار تعداد مشاهده مقاله: 121 تعداد دریافت فایل اصل مقاله: 139 |