
تعداد نشریات | 13 |
تعداد شمارهها | 622 |
تعداد مقالات | 6,489 |
تعداد مشاهده مقاله | 8,609,941 |
تعداد دریافت فایل اصل مقاله | 8,200,541 |
ارزیابی توزیع مکانی آلودگی فلزات سنگین با استفاده از فاکتور آلودگی و شاخص زمین انباشتگی در خاک سطحی محل دفن زباله هزارپیچ گرگان | ||
مجله مدیریت خاک و تولید پایدار | ||
دوره 13، شماره 3، مهر 1402، صفحه 45-62 اصل مقاله (913.88 K) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/ejsms.2023.20160.2061 | ||
نویسندگان | ||
علی سودمند1؛ سهیلا ابراهیمی* 2؛ فرشاد کیانی3 | ||
1دانشجوی دکتری ،گروه مدیریت منابع خاک، ارزیابی اراضی و پدومتری، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران. | ||
2دانشیار، گروه فیزیک و آلودگی خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران. | ||
3دانشیار ،گروه فیزیک فرسایش و حفاظت خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران. | ||
چکیده | ||
سابقه و هدف: محلهای دفن زباله یکی از منابع انتشار آلودگی فلزات سنگین در سراسر جهان هستند. گسترش فزاینده زندگی شهرنشینی و افزایش بی رویه جمعیت شهری، موجب افزایش تولید انواع فضولات و مواد زائد شده است. یکی از معظلات رشد سریع جمعیت و صنعتی شدن در کشورهای جهان سوم به خصوص ایران، دفن نامناسب زباله و ایجاد آلودگی ناشی از آن می باشد. از مسائلی که باید به آن توجه ویژه داشت، دفن این فضولات و مواد زائد جامد شهری، شیرآبه ها و گازهای تولید شده از تجزیه زبالههای دارای ترکیبات آلی می باشد. مطالعه حاضر با هدف بررسی تأثیر لندفیل دفن زباله شهری گرگان با سابقه دفن بیش از 37 سال، در منطقه هزار پیچ بر توزیع مکانی فلزات سنگین شامل روی، کادمیوم، سرب و مس در خاک منطقه بود. بررسی میزان آلودگی حاصله با استفاده از شاخصهای زیست محیطی توزیع مکانی فلزات سنگین، فاکتور آلودگی، زمین انباشتگی و بار آلودگی انجام شد. مواد و روش ها: با انجام مطالعات اولیه و در نظر گرفتن نقشههای پایهای موجود، تعداد 110 نمونه از عمق صفر تا 30 سانتیمتری با فواصل منظم تهیه و در نهایت مقادیر فلزات سنگین با استفاده از دستگاه جذب اتمی اندازهگیری شد. یافته ها: نتایج بدست آمده نشان داد که غلظت فلزات سنگین در نمونههای جمعآوری شده به ترتیب در روی، سرب، مس و کادمیوم بیشترین مقدار را داشتند. میانگین غلظت فلزات سنگین کادمیوم، سرب، مس و روی به ترتیب افزایش 25/2 و 01/1 و 99/0 و 63/0 درصدی نسبت به پسزمینه داشتتند که این امر نشاندهنده وجود منبع آلودگی نقطهای در منطقه مطالعاتی است. توزیع مکانی پراکنش با توجه به نقشه های استخراج شده، نشان داد سطح بالای غلظت فلزات سنگین در بخشهای مرکزی و شمال غربی منطقه مورد مطالعه قرار داشته که بهدلیل مکان محل دفن زباله بوده است. اقلیم مرطوب و وجود توپوگرافی حاکم بر منطقه سبب انتشار شیرابه زباله توسط رواناب شده است، لیکن با افزایش فاصله از محل دفن زباله روند نزولی غلظت آلایندهها نمایان می باشد. فاکتور آلودگی در منطقه مورد نظر بیانگر آلودگی متوسط برای فلزات سنگین سرب، مس و روی و آلودگی شدید خاک برای فلز کادمیوم بود. نتایج مربوط به شاخص زمین انباشتگی نیز نشان داد که مقدار میانگین این شاخص در کادمیوم، در کلاس آلودگی "کمی آلوده" قرار دارد و در مس، روی و سرب در کلاس آلودگی " غیرآلوده تا کمی آلوده" قرار دارد. همچنین با توجه به مقدار میانگین شاخص بار آلودگی، خاک سطحی از بار آلودگی متوسط برخوردار می باشد و نتایج بار آلودگی، آلودگی خاک به فلزات سنگین را تأیید می کند. بیشترین غلظت فلزات سنگین در مجاورت محل دفن زباله قابل مشاهده است و با افزایش فاصله بر اساس شیب و توپوگرافی موجود، روند کاهشی وجود داشت. نتیجه گیری: به نظر میرسد منبع آلودگی فلزات سنگین، محل دفن زباله بوده است و عامل اصلی نشر و پخش آن شیرابههای حاصل از آن بوده که باعث انتشار آلودگی به مناطق اطراف بر اساس سیمای منطقه و در راستای جهت شیب شده است. | ||
کلیدواژهها | ||
توزیع فلزات سنگین؛ شاخص آلودگی؛ لندفیل؛ شاخص زمین انباشتگی | ||
مراجع | ||
1.Li, N., Kang, Y., Pan, W., Zeng, L., Zhang, Q., & Luo, J. (2015). Concentration and transporta-tion of heavy metals in vegetables and risk assessment of human exposure to bioac-cessible heavy metals in soil near a waste-incinerator site, South China. Science of the Total Environment, 521, 144-151. doi: 10.1016/j.scitotenv.2015.03.081.
2.Tazangi, M. H., Ebrahimi, S., Nasrabadi, R. G., & Naeeni, S. A. M. (2020). Kinetic monitoring of bioremediators for biodegradation of gasoil-polluted soil. Water, Air, & Soil Pollution, 231, 1-13. doi: 10.1007/s11270-020-04794-6.
3.Fallah, M., Ebrahimi, S., & Shabanpour, M. (2013). Hydrocarbon pollution emission in the pilot and pulse condition in saturated porous media of soil. Journal of Water and Soil Conservation, 20(3), 227-240. [In Persian]
4.Rahman, Z., & Singh, V. P. (2019). The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr) (VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environmental Monitoring and Assessment, 191, 419. doi: 10.1007/ s10661-019-7528-7.
5.Abu-Rukah, Y., & Abu-Aljarayesh, I. (2002). Thermodynamic assessment in heavy metal migration at El-Akader landfill site, North Jordan. Waste Management, 2, 727-738. doi: 10.1016/ S0956-053X(02)00046-6.
6.Öman, C. B., & Junestedt, C. (2008). Chemical characterization of landfill leachates–400 parameters and compounds. Waste management, 28 (10), 1876-1891. doi: 10.1016/j.wasman.2007.06.018
7.Ebrahimi, S., Shayegan, J., Malakouti, M. J., Bybordi, M., & Ghodousi, J. (2022). Assessing of some important gas condensate pollution factors along horizontal and vertical soil contamination gradients (Sarkhun's gas refinery, Bandar Abbas). Journal of Soil Science Society of Iran, 1(1), 97-112. [In Persian]
8.Talalaj, I. A. (2015). Release of heavy metals from waste into leachate in active solid waste landfill. Environment Protection Engineering, 41, 1. doi: 10.5277/epe150107.
9.Akhavan, S., Ebrahimi, S., Navabian, M., Shabanpour, M., Mojtahedi, A., & Movahedi Naeini, A. (2018). Significance of physicochemical factors in the transmission of Escherichia coli and chloride. Environmental Health Engineering and Management Journal, 5(2), 115-122. doi: 10.15171/EHEM.2018.16.
10.Naveen, B., Mahapatra, D. M., Sitharam, T., Sivapullaiah, P., & Ramachandra, T. (2017). Physico-chemical and biological characterization of urban municipal landfill leachate. Environmental Pollution, 220, 1-12. doi: 10.1016/j. envpol.2016.09.002.
11.Adamcová, D., Radziemska, M., Ridošková, A., Bartoň, S., Pelcová, P., Elbl, J., Kynický, J., Brtnický, M., & Vaverková, M.D. (2017). Environmental assessment of the effects of a municipal landfill on the content and distribution of heavy metals in Tanacetum vulgare L. Chemosphere, 185, 1011-8. doi: 10.1016/j.chemosphere.2017.07.060.
12.Yusof, N., Haraguchi, A., Hassan, M., Othman, M., Wakisaka, M., & Shirai, Y. (2009). Measuring organic carbon, nutrients and heavy metals in rivers receiving leachate from controlled and uncontrolled municipal solid waste (MSW) landfills. Waste Management, 29 (10), 2666-2680. doi: 10.1016/j. wasman.2009.05.022.
13.Adelopo, A., Haris, P. I., Alo, B., Huddersman, K., & Jenkins, R. (2018). Multivariate analysis of the effects of age, particle size and landfill depth on heavy metals pollution content of closed and active landfill precursors. Waste Management, 78, 227-37. doi: 10.1016/ j.wasman.2018.05.040.
14.Suh, J., Kim, S. M., Yi, H., & Choi, Y. (2017). An overview of GIS-based modeling and assessment of mining-induced hazards: Soil, water, and forest. International Journal of Environmental Research and Public Health. 14 (12), 1463. doi: 10.3390/ ijerph14121463.
15.Oliver, M. A., & Webster, R. (1990). Kriging: a method of interpolation for geographical information systems. International Journal of Geographical Information System. 4(3), 313-32. doi: 10.1080/02693799008941549.
16.Nakayama, S. M., Ikenaka, Y., Hamada, K., Muzandu, K., Choongo, K., Teraoka, H., Mizuno, N., & Ishizuka, M. (2011). Metal and metalloid contamination in roadside soil and wild rats around a Pb–Zn mine in Kabwe, Zambia. Environmental Pollution, 159, 175-81. doi: 10.1016/j.envpol.2010.09.007. 17.Dang, Z., Liu, C., & Haigh, M. J. (2002). Mobility of heavy metals associated with the natural weathering of coal mine spoils. Environmental Pollution. 118(3), 419-26. doi: 10.1016/ S0269-7491(01)00285-8.
18.Quang, T. T., Chou, T. Y., Van, H. T., Chen, H., Mon, D., & Tung, L. H. (2018). GIS-based techniques for estimating spatial distribution of heavy metals in urban soil: a case study in hoc mon district, Ho Chi Minh City, Vietnam. International Refereed Journal of Engineering and Science, 7, 25-9.
19.Ebrahimi, S., Shayegan, J., Malakouti, M., & Akbari, A. (2011). Environmental evaluation and assessment of some important factors of oil contamination in soil around Sarkhoun gas refinery of Bandar Abbas. Journal of Environmental Studies, 37(57), 9-26. [In Persian]
20.Altan, M., Ayyildiz, Ö., Malkoç, S., Yazici, B., & Koparal, S. (2011). Heavy metal distribution map in soil by using GIS techniques. Journal of Environmental Science and Engineering, 5, 1.
21.Li, Y., Li, C. K., Tao, J. J., & Wang, L. D. 2011. Study on spatial distribution of soil heavy metals in Huizhou city based on BP--ANN modeling and GIS. Procedia Environmental Sciences, 1, 1953-60. doi:10.1016/j.proenv.2011. 09.306.
22.Ghanavati, N., & Nazarpour, A. (2018). Environmental investigation of heavy metals concentration in Ahvaz city street dust, by using Geographical Information Systems (GIS). Journal of Environmental Studies, 44(3), 393-410. doi: 10.22059/ jes.2019.213132.1007285. [In Persian]
23.Mahapatra, S., Venugopal, T., Shanmugasundaram, A., Giridharan, L., & Jayaprakash, M. (2020). Heavy metal index and geographical information system (GIS) approach to study heavy metal contamination: a case study of north Chennai groundwater. Applied Water Science, 10, 1-17. doi: 10.1007/ s13201-020-01321-0.
24.Ahmed, F., Fakhruddin, A. N. M., Imam, M. T., Khan, N., Khan, T. A., Rahman, M. M., & Abdullah, A. T. M. (2016). Spatial distribution and source identification of heavy metal pollution in roadside surface soil: a study of Dhaka Aricha highway, Bangladesh. Ecological Processes, 5, 1-16. doi: 10.1186/ s13717-016-0045-5.
25.Santos-Francés, F., Martínez-Graña, A., Ávila Zarza, C., García Sánchez, A., & Alonso Rojo, P. (2017). Spatial distribution of heavy metals and the environmental quality of soil in the Northern Plateau of Spain by geostatistical methods. International Journal of Environmental Research and Public Health, 14(6), 568. doi: 10.3390/ijerph14060568.
26.Chen, M., & Ma, L. Q. (2001). Comparison of three aqua regia digestion methods for twenty Florida soils. Soil Science Society of America Journal, 65(2), 491-499. doi: 10.2136/ sssaj2001.652491x.
27.Rice, E. W., Baird, R. B., Eaton, A. D., & Clesceri, L. S. (2012). Standards methods for the examination of water and wastewater, 22th edition. American Public Health Association, American Water Works Association, Water Environment Federation.
28.Richards, L. A. (1954). Diagnosis and Improvement of Saline and Alkali Soils. P 4-160. In: L. A. Richards (Ed.). Handbook of U.S. Dept. of Agriculture, Washington.
29.Bremner, J. M., & Mulvaney, C. S. 1982. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. ASA Madison. 6, 595-624.
30.Muller, G. 1980. Index of geoaccumulation in sediments of the Rhine River. Geojournal. 2, 108-18.
31.Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research. 14(8), 975-1001. doi: 10.1016/ 0043-1354(80)90143-8.
32.Jawed Pazhmaan, A., Ebrahimi, S., Kiani, F., & Rashidi, H. (2021). Pollution assessment, spatial distribution and exposure of Cd and Pb in surface soils of abandoned landfill site in Gorgan, north of Iran. Environmental Resources Research, 9 (1), 69-78. doi: 10.22069/ijerr.2021.5529.
33.Bhuiyana, M. A. H., Parvez, L., Islam, M. A., Dampare, S. B., & Suzukia, S. (2010). Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. Journal of Hazardous Materials, 173, 384-392. doi: 10.1016/j.jhazmat.2009.08.085.
34.Makuleke, P., & Ngole-Jeme, V. M. (2020). Soil heavy metal distribution with depth around a closed landfill and their uptake by Datura stramonium. Applied and Environmental Soil Science, 2020, 1-14. doi: 10.1155/2020/8872475.
35.Mirzaei, M., Marofi, S., Solgi, E., Abbasi, M., & Karimi, R. (2017). Evaluation of heavy metal contamination ecological risk in a food-producing ecosystem. Journal of Health Research in Community, 3 (2), 1-16. [In Persian]
36.Shang, B., Zou, Y., Xu, Y. M., Song, W. J., Wang, C. D., Meng, J., Liu, X. B., & Chu, Z. G. (2014). Relationship between SOM contents of tobacco fields and elevation and parent materials in central region of Guizhou province. Soils, 46(3), 446-451.
37.Li, F., Li, X., Hou, L., & Shao, A. (2018). Impact of the coal mining on the spatial distribution of potentially toxic metals in farmland tillage soil. Scientific Reports, 8(1), 14925. doi: 10.1038/ s41598-018-33132-4.
38.Wieczorek, J., Baran, A., Urbański, K., Mazurek, R., & Klimowicz-Pawlas, A. (2018). Assessment of the pollution and ecological risk of lead and cadmium in soils. Environmental Geochemistry and Health, 40(6), 2325-2342. doi: 10.1007/ s10653-018-0100-5.
39.Wu, H., Liu, Q., Ma, J., Liu, L., Qu, Y., Gong, Y., Yang, S., & Luo, T. (2020). Heavy Metal (loids) in typical Chinese tobacco-growing soils: Concentrations, influence factors and potential health risks. Chemosphere, 245,125591. doi: 10.1016/j.chemosphere.2019.125591.
40.Karimpoor, R., Ebrahimi, S., Malekzadeh, E., & Hassanpour-bourkheili, S. (2022). Bioremediation of total petroleum hydrocarbons in oil sludge-polluted soil using active carbon remediator. International Journal of Environmental Science and Technology, 19(8), 7649-7660. doi: 10.1007/s13762-022-03964-9.
41.Gebre, G. D., & Debelie, H. D. (2015). Heavy metal pollution of soil around solid waste dumping sites and its impact on adjacent community: the case of Shashemane open landfill, Ethiopia. Journal of Environment and Earth Science, 5(15), 169-78.
42.Vongdala, N., Tran, H. D., Xuan, T. D., Teschke, R., & Khanh, T. D. (2019). Heavy metal accumulation in water, soil, and plants of municipal solid waste landfill in Vientiane, Laos. International Journal of Environmental Research and Public Health, 16(1), 22. doi: 10.3390/ ijerph16010022.
43.Seyed Alikhani, S., Shorafa, M., Tavassoli, A., & Ebrahimi, S. S. (2011). The Effect of Plants' Growth at Different Densities on Soil Petroleum Hydrocarbons Remediation. Journal of Water and Soil, 25(5), 961-970. doi: 10.22067/jsw.v0i--.11204. [In Persian]
44.Kabata-Pendias, A. (2000). Trace elements in soils and plants. CRC press. 432p.
45.Baziene, K., Tetsman, I., & Albrektiene, R. (2020). Level of pollution on surrounding environment from landfill aftercare. International Journal of Environmental Research and Public Health, 17(6), 2007. doi: 10.3390/ ijerph17062007.
46.Fonge, B. A., Nkoleka, E. N., Asong, F. Z., Ajonina, S. A., & Che, V. B. (2017). Heavy metal contamination in soils from a municipal landfill, surrounded by banana plantation in the eastern flank of Mount Cameroon. African Journal of Biotechnology, 16(25), 1391-1399. | ||
آمار تعداد مشاهده مقاله: 239 تعداد دریافت فایل اصل مقاله: 185 |