
تعداد نشریات | 13 |
تعداد شمارهها | 623 |
تعداد مقالات | 6,502 |
تعداد مشاهده مقاله | 8,643,628 |
تعداد دریافت فایل اصل مقاله | 8,239,833 |
ارزیابی اثر سطوح مختلف تنش شوری و برگپاشی اسپرمین، اسپرمیدین و پوترسین بر عملکرد دانه و غلظت عناصر غذایی برگ و ریشه در گیاه کاملینا | ||
مجله مدیریت خاک و تولید پایدار | ||
دوره 13، شماره 3، مهر 1402، صفحه 1-24 اصل مقاله (1.44 M) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/ejsms.2023.21074.2089 | ||
نویسندگان | ||
اسماعیل قلی نژاد* 1؛ بختیار لله گانی2؛ شهریار کاظمی3 | ||
1دانشیار، گروه علمی علوم کشاورزی، دانشگاه پیام نور، تهران، ایران | ||
2استادیار، گروه علمی علوم کشاورزی، دانشگاه پیام نور، تهران، ایران | ||
3استادیار، گروه علمی علوم کشاورزی، دانشگاه پیام نور، تهران، ایران | ||
چکیده | ||
سابقه و هدف: شوری خاک به ویژه در مناطق خشک و نیمه خشک یکی از عواملی است که رشد گیاهان را محدود میکند. تجمع بیش از حد یونهای سدیم و کلرید منجر به کاهش رشد و عدم تعادل مواد مغذی میشود. استفاده از پلی آمینهای اگزوژن، از جمله پوترسین، اسپرمیدین و اسپرمین به عنوان یک روش موثر نه تنها در تعیین نقش آنها در پاسخ به شوری، بلکه به عنوان راهی برای افزایش مقاومت گیاه به شوری در نظر گرفته میشود. کاملینا یک محصول دانه روغنی از خانواده براسیکا است که حاوی سایر ترکیبات زیست فعال مانند فلاونوئیدها و محصولات فنلی و به عنوان منبع جدیدی از اسیدهای چرب ضروری، به ویژه اسیدهای چرب امگا 3 است. این مطالعه با هدف ارزیابی اثر سطوح مختلف کلرید سدیم و برگپاشی اسپرمین، اسپرمیدین و پوترسین بر عملکرد دانه و غلظت عناصر غذایی برگ و ریشه در گیاه کاملینا انجام گرفت. مواد و روشها: آزمایش در اسفندماه سال 1400 به صورت فاکتوریل بر پایه طرح کاملا تصادفی به صورت کشت گلدانی با 12 تیمار و 3 تکرار اجرا گردید. تیمار تنش شوری با آب دریاچه ارومیه در سه سطح (صفر، 15، 30 دسی زیمنس بر متر) بود. تیمار محلولپاشی در 4 سطح 1- محلولپاشی با اسپرمین (2 میلیمولار)، 2- محلولپاشی با اسپرمیدین (2 میلیمولار)، 3- محلولپاشی با پوترسین (2 میلیمولار) و شاهد (عدم محلولپاشی) بود که زمان اعمال محلولپاشی بعد از استقرار سه گیاهچه در گلدان و رسیدن به مرحله چهار برگی هر 3 روز یکبار (در مجموع در 6 مرحله) انجام گرفت. در انتهای فصل رشد گیاه کاملینا برای محاسبه عملکرد دانه، بذرهای موجود در کپسولهای سه بوته هر گلدان جدا و وزن گردید. تجزیه و تحلیل آماری دادهها با استفاده از نرمافزار SAS (نسخه 1/9) و MATATC انجام و مقایسه میانگینها نیز توسط آزمون توکی در سطح پنج درصد انجام شد. همچنین برای ترسیم نمودارها از برنامه Excel استفاده شد. یافتهها: نتایج این تحقیق نشان داد تنش شوری 30 و 15 دسی زیمنس بر متر در مقایسه با تیمار بدون شوری بهترتیب پتاسیم برگ (52 و 17 درصد)، پتاسیم ریشه (44 و 37 درصد)، منیزیم برگ (50 و 28 درصد)، منیزیم ریشه (56 و 24 درصد)، روی برگ (58 و 47 درصد)، روی ریشه (39 و 29 درصد)، آهن برگ (10 و 2 درصد)، آهن ریشه (57 و 23 درصد) و عملکرد دانه را (52 و 10 درصد) کاهش داد ولی مقدار سدیم برگ (89 و 82 درصد)، سدیم ریشه (39 و 11 درصد)، کلسیم برگ (14 و 6 درصد) و کلسیم ریشه را (76 و 28 درصد) افزایش داد. همچنین تنش شوری به دلیل افزایش مقدار سدیم و کاهش پتاسیم باعث کاهش نسبت جذب پتاسیم به سدیم شد ولی نسبت کلسیم به مجموع سدیم و پتاسیم ریشه و برگ را افزایش داد. در تمام سطوح شوری محلولپاشی با پلیآمینها با کاهش مقدار سدیم برگ و ریشه باعث افزایش مقدار پتاسیم برگ و ریشه، منیزیم برگ و ریشه، روی برگ و ریشه، آهن برگ و ریشه شد. همچنین محلولپاشی با اسپرمین، اسپرمیدین و پوترسین، در مقایسه با بدون محلولپاشی، بهترتیب عملکرد دانه را به میزان 32، 8 و 21 درصد افزایش داد. نتیجهگیری: نتایج این تحقیق نشان داد محلولپاشی با اسپرمین، اسپرمیدین و پوترسین با بهبود جذب عناصر پرمصرف و کم مصرف ریشه و برگ، افزایش نسبت پتاسیم به سدیم و نسبت کلسیم به مجموع سدیم و پتاسیم ریشه و برگ توانست اثرات تنش شوری را تعدیل داده و باعث بهبود عملکرد دانه کاملینا در شرایط تنش شوری شد و از کاهش بیش از حد عملکرد دانه جلوگیری کرد بنابراین محلولپاشی با پلیآمینها به عنوان راهکاری موثر در کاهش خسارت ناشی از تنش شوری در گیاه کاملینا معرفی میگردد. | ||
کلیدواژهها | ||
پلی آمین؛ تنش شوری؛ عملکرد دانه؛ عناصر؛ کاملینا | ||
مراجع | ||
1.FAO. (2008). FAO Land and Plant Nutrition Management Service.
2.Fariduddin, Q., Mir, B. A., Yusuf, M., & Ahmad, A. (2013). Comparative roles of brassinosteroids and polyamines in salt stress tolerance. Acta Physiologiae Plantarum, 35(7), 2037-2053.
3.Diao, Q., Song, Y., & Qi, H. (2015). Exogenous spermidine enhances chilling tolerance of tomato (Solanum lycopersicum L.) seedlings via involvement in polyamines metabolism and physiological parameter levels. Acta Physiologiae Plantarum, 37(11), 230.
4.Sharma, A., Slathia, S., Pal, S., Sharma, Y., & Langer, A. (2014). Role of 24-Epibrassinolide, Putrescine and Spermine in Salinity Stressed Adiantum capillus-veneris Leaves. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 84, 183-192.
5.Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., & Hernandez, J. A. (2017). Plant Responses to Salt Stress: Adaptive Mechanisms. Agronomy, 7(1), 1-38. 6.Sun, J., Chen, S. L., Dai, S. X., Wang,R. G., Li, N. Y., Shen, X., Zhou, X. Y., Lu, C. F., Zheng, X. J., Hu, Z. M., Zhang, Z. K., Song, J., & Xu, Y. (2009). Ion flux profiles and plant ion homeostasis control under salt stress. Plant Signaling & Behavior, 4, 261-4.
7.Yu, Z., Duan, X., Luo, L., Dai, S., Ding, Z., & Xia, G. (2020). How Plant Hormones Mediate Salt Stress Responses. Trends in Plant Science, 25(11), 1117-1130.
8.Balal, R. M., Shahid, M. A., Khan, N., Sarkhosh, A., Zubair, M., Rasool, A., Mattson, N., Gomez C., Bukhari, M. A., Waleed, M., & Nasim, W. (2022). Morphological, Physiological, and Biochemical Modulations in Crops under Salt Stress, in Building Climate Resilience in Agriculture, W.N.J. et al., Editor, Springer International Publishing.
9.Min, W., Guo, H., Zhou, G., Zhang, W., Ma, L., Ye, J., & Hou, Z. (2014). Root distribution and growth of cotton as affected by drip irrigation with saline water. Field Crops Research, 169, 1-10.
10.Wakeel, A. (2013). Potassium–sodium interactions in soil and plant under saline-sodic conditions. Journal of Plant Nutrition and Soil Science, 176(3), 344-354. 11.Hassanpouraghdam, M. B., Mehrabani, L. V., & Tzortzakis, N. (2020). Foliar application of nano-zinc and iron affects physiological attributes of rosmarinus officinalis and quietens nacl salinity depression. Journal of Soil Science and Plant Nutrition, 20(2), 335-345.
12.Novo, L. A., Covelo, E. F., & González, L. (2014). Effect of salinity on zinc uptake by Brassica juncea. International Journal of Phytoremediation, 16(12-7), 704-718.
13.Tolay, I. (2021). The impact of different Zinc (Zn) levels on growth and nutrient uptake of Basil (Ocimum basilicum L.) grown under salinity stress. PLOS ONE, 16, e0246493.
14.Alghamdi, E., Farooq, M., & Metwali, E. (2022). Influence of nano zinc oxide on the in vitro callus growth, ex vitro tuber yield and nutritional quality of potato (Solanum tuberosum L.) cultivars under salt stress. Journal of Animal and Plant Sciences, 32, 440-449.
15.Mirvat, E. G., Mohamed, M. H., & Tawfik, M. M. (2006). Effect of phosphorus fertilizer and foliar spraying with zinc on growth, yield and quality of groundnut under reclaimed sandy soils. Journal of Applied Science Research, 2(8), 491-496.
16.Boostani, H. R., & Farrokhnejad, E. (2018). Effect of plant growth promoting rhizobacteria, mycorrhizae fungi and salinity stress on the uptake of some nutrients by corn (Zea mays L.). Journal of Plant Process and Function, 7(24), 39-52.
17.Roychoudhury, A., Basu, S., & Sengupta, D. N. (2011). Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of indica rice differing in their level of salt tolerance. Journal of Plant Physiology, 168(4), 317-28.
18.Radhakrishnan, R., & Lee, I. J. (2013). Regulation of salicylic acid, jasmonic acid and fatty acids in cucumber (Cucumis sativus L.) by spermidine promotes plant growth against salt stress. Acta Physiologiae Plantarum, 35(12), 3315-3322.
19.Chattopadhayay, M. K., Tiwari, B. S., Chattopadhyay, G., Bose, A., Sengupta, D. N., & Ghosh, B. (2002). Protective role of exogenous polyamines on salinity-stressed rice (Oryza sativa) plants. Physiology and Plant, 116(2), 192-199.
20.Hussein, M., Nadia, E., Gereadly, H., & El-Desuki, M. (2006). Role of putrescine in resistance to salinity of pea plants (Pisum sativum L.). Journal of Applied Sciences Research, 2(9), 598-604.
21.Baniasadi, F., Saffari, V. R., & Maghsoudi Moud, A. A. (2018). Physiological and growth responses of Calendula officinalis L. plants to the interaction effects of polyamines and salt stress. Scientia Horticulturae, 234, 312-317.
22.Ibrahim, F., & El Habbasha, E. S. (2015). Chemical composition, medicinal impacts and cultivation of camelina (Camelina sativa): Review. 8, 114-122.
23.Angelini, L. G., Abou Chehade, L., Foschi, L., & Tavarini, S. (2020). Performance and potentiality of camelina (Camelina sativa L. crantz) genotypes in response to sowing date under mediterranean environment. Agronomy, 10(12), 1929.
24.Keshavarz, H. (2020). Study of water deficit conditions and beneficial microbes on the oil quality and agronomic traits of canola (Brassica napus L.). Grasas y Aceites, 71(3), e373.
25.Heydarian, Z., Yu, M., Gruber, M., Coutu, C., Robinson, S. J., & Hegedus, D. D. (2018). Changes in gene expression in Camelina sativa roots and vegetative tissues in response to salinity stress. Scientific Reports, 8(1), 9804.
26.Kazemi, S., Rafati Alashti, M., & Hosseini, S. J. (2022). Response of Biochemical and Physiological Properties of camellia (Camelina sativa L.) to Foliar Application of Calcium and Silicon Nanoparticles. Silicon, 14(12), 6817-6828.
27.Alizadeh, A. (2000). The relationship between water, soil and plants. Mashhad: Astan Quds Publications. Emam RezaUniv, 616p. (In Persian)
28.William, H. (2000). Official methods of analysis of AOAC international. 17nd ed. Association Official Analytical Chemists. USA. 100.
29.Gholamian, S. M., Ghamarnia, H., & Kahrizy, D. (2017). Effects of saline water on Camelina (Camelina sativa) yield in Greenhouse condition.Water and Irrigation Management, 7(2), 333-348.
30.Kaya, C., Ashraf, M., Alyemeni, M. N., & Ahmad, P. (2020). The role of endogenous nitric oxide in salicylic acid-induced up-regulation of ascorbate-glutathione cycle involved in salinity tolerance of pepper (Capsicum annuum L.) plants. Plant Physiology and Biochemistry, 147, 10-20.
31.Talaat, N. B., Mahmoud, A. W. M., & Hanafy, A. M. A. (2022). Co-application of salicylic acid and spermine alleviates salt stress toxicity in wheat: growth, nutrient acquisition, osmolytes ccumulation, and antioxidant response. Acta Physiologiae Plantarum, 45(1), 1. 32.Aelaei, M., Karami, Z., Arghavani, M., & Salehi, F. (2021). The Study of effects of spermine under salinity stress on orphophysiological characteristics of Catharanthus roseus L. Iranian Journal of Horticultural Science, 52(3), 553-564.
33.Zlatev, Z., & Yordanov, I. (2004). Effects of soil drought on photosynthesis and chlorophyll fluorescence in bean plants. Journal of Plant Physiology, 30, 3-4.
34.Ashraf, M. (2001). Relationships between growth and gas exchange characteristics in some salt-tolerant amphidiploid Brassica species in relation to their diploid parents. Environmental and Experimental Botany, 45, 155-163.
35.Alamer, K. H., Perveen, S., Khaliq, A., Zia Ul Haq, M., Ibrahim, M. U., & Ijaz, B. (2022). Mitigation of salinity stress in maize seedlings by the application of vermicompost and sorghum water extracts. Plants, 11(19), 2548.
36.Rostampour, P., Hamidian, M., Dehnavi, M. M., & Saeidimajd, G. A. (2023). Evaluation of osmoregulation and morpho-physiological responses of Borago officinalis under drought and salinity stress with equal osmotic potential. Biochemical Systematics and Ecology, 106, 104567.
37.Abbas, M., Younis, M., & Shukry, W. (1991). Plant growth, metabolism and adaptation in relation to stress conditions. XIV. Effect of salinity on the internal solute concentrations in Phaseolus vulgaris. Journal of Plant Physiology, 138(6), 722-727.
38.Moradi, S., Jahanban, L., & Basaki, T. (2022). Concentration of micronutrient in Azola at cadmium and salinity contaminated environment. Human & Environment, 20(3), 217-230.
39.Bardel, J., Ghanbari, A., & Khajeh, M. (2016). Physiological response and polyamines content of cumin (Cuminum cyminum L.) to water irrigation quality in the application of chemical and organic fertilizers. Iranian Journal of Medicinal and Aromatic Plants Research, 32(2), 360-375.
40.Hussain, S., Shaukat, M., Ashraf, M., Zhu, C., Jin, Q., & Zhang, J. (2019). Salinity stress in arid and semi-arid climates: Effects and management in field crops. Climate Change and Agriculture, 13.
41.Hezaveh, T. A., Rahmani, F., Alipour, H., & Pourakbar, L. (2020). Effects of foliar application of ZnO nanoparticles on secondary metabolite and micro-elements of camelina (Camelina sativa L.) under salinity stress. Journal of Stress Physiology & Biochemistry, 16(4), 54-69.
42.Epstein, E. (1998). How Calcium Enhances Plant Salt Tolerance. Science, 280(5371), 1906-1907.
43.Turhan, E., & Eris, A. (2004). Effects of sodium chloride applications and different growth media on ionic composition in strawberry plant. Journal of Plant Nutrition, 27, 1653-1665.
44.Billard, V., Maillard, A., Coquet, L., Jouenne, T., Cruz, F., Garcia-Mina, J. M., Yvin, J. C., Ourry, A., & Etienne, P. (2016). Mg deficiency affects leaf Mg remobilization and the proteome in Brassica napus. Plant Physiology and Biochemistry, 107, 343-373.
45.Wolf, F. I., & Trapani, V. (2007). Cell (patho) physiology of magnesium. Clinical Science, 114(1), 27-35.
46.Miura, K. (2013). Nitrogen and Phosphorus Nutrition Under Salinity Stress, in Ecophysiology and Responses of Plants under Salt Stress, P. Ahmad, M.M. Azooz, and M.N.V. Prasad, Editors., Springer New York: New York, NY. 425-441.
47.Yildirim, E., Karlidag, H., & Turan, M. (2009). Mitigation of salt stress in strawberry by foliar K, Ca and Mg nutrient supply. Plant, Soil and Environment, 55, 213-221.
48.Momenpour, A., Bakhshi, D., Imani, A., & Rezaie, H. (2015). Effect of salinity stress on growth characteristics and concentrations of nutrition elements in almond ‘Shahrood 12’, ‘Touno’ cultivars and ‘1-16’ genotype budded on GF677 rootstock. Journal of Crops Improvement, 17(1), 197-216. 49.Pashangeh, Z., Abdolahi, F., & Ghasemi, M. (2020). The interaction of salinity and gibberellin on leaf abscission, dry matter, antioxidant enzymes activity and ion content in guava (Psidium guajava L). Journal of Plant Research (Iranian Journal of Biology), 33(4), 809-826.
50.Askari, M., Amini, F., & Jamali, F. (2015). Effects of zinc on growth, photosynthetic pigments, proline, carbohydrate and protein content of Lycopersicum esculentum under salinity. Journal of Plant Process and Function, 3, 45-58.
51.Farahat, M. M., Ibrahim, M. M., Taha, L., & El-Quesni, E. M. (2007). Response of vegetative growth and some chemical constituents of Cupressus sempervirens L. to foliar application of ascorbic acid and zinc at Nubaria. World Journal of Agricultural Sciences, 3, 496-502.
52.Siddiqui, S. N., Umar, S., & Iqbal, M. (2015). Zinc-induced modulation of some biochemical parameters in a high- and a low-zinc-accumulating genotype of Cicer arietinum L. grown under Zn-deficient condition. Protoplasma, 252(5), 1335-1345.
53.Mateos‐Naranjo, E., Redondo‐Gómez, S., Cambrollé, J., Luque, T., & Figueroa, M. (2008). Growth and photosynthetic responses to zinc stress of an invasive cordgrass, Spartina densiflora. Plant Biology, 10(6), 754-762.
54.Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59(1), 651-681.
55.Nenova, V. (2008). Growth and mineral concentrations of pea plants under different salinity levels and iron supply. General and Applied Plant Physiology, 34(3-4), 189-202.
56.Iqbal, M., & Ashraf, M. (2005). Changes in growth, photosynthetic capacity and ionic relations in spring wheat (Triticum aestivum L.) due to pre-sowing seed treatment with polyamines. Plant Growth Regulation, 46(1), 19-30.
57.Kamiab, F., Talaie, A., Khezri, M., & Javanshah, A. (2014). Exogenous application of free polyamines enhance salt tolerance of pistachio (Pistacia vera L.) seedlings. Plant Growth Regulation, 72, 257-268.
58.Sajid Aqeel Ahmad, M., Javed, F., & Ashraf, M. (2007). Iso-osmotic effect of NaCl and PEG on growth, cations and free proline accumulation in callus tissue of two indica rice (Oryza sativa L.) genotypes. Plant Growth Regulation, 53(1), 53-63.
59.Wu, Y., Hu, Y., & Xu, G. (2008). Interactive effects of potassium and sodium on root growth and expression of K/Na transporter genes in rice. Plant Growth Regulation, 57(3), 271-280.
60.Patel, P., Kajal, S., Patel, V., Patel, V., & Kristi, S. S. (2010). Impact of salt stress on nutrient uptake and growth of cowpea. Brazilian Journal of Plant Physiology, 22, 43-48.
61.Netondo, G., Onyango, J. C., & Beck, E. (2004). Sorghum and salinity: I. Response of growth, water relations, and ion accumulation to NaCl salinity. Crop Science, 44, 797-805.
62.Ketehouli, T., Idrice Carther, K. F., Noman, M., Wang, F. W., Li, X. W., & Li, H. Y. (2019). Adaptation of plants to salt stress: Characterization of Na+ and K+ transporters and role of CBL gene family in regulating salt stress response. Agronomy, 9(11), 1-32.
63.Farsaraei, S., Mehdizadeh, L., & Moghaddam, M. (2021). Seed priming with putrescine alleviated salinity stress during germination and seedling growth of medicinal pumpkin. Journal of Soil Science and Plant Nutrition, 21(3), 1782-1792.
64.Raziq, A., Mohi Ud Din, A., Anwar, S., Wang, Y., Jahan, M. S., He, M., Ling, C. G., Sun, J., Shu, S., & Guo, S. (2022). Exogenous spermidine modulates polyamine metabolism and improves stress responsive mechanisms to protect tomato seedlings against salt stress. Plant Physiology and Biochemistry, 187, 1-10.
65.Iqbal, M., & Ashraf, M. (2010). Changes in hormonal balance: a possible mechanism of pre‐sowing chilling‐induced salt tolerance in spring wheat. Journal of Agronomy and Crop Science, 196(6), 440-454. | ||
آمار تعداد مشاهده مقاله: 154 تعداد دریافت فایل اصل مقاله: 229 |