
تعداد نشریات | 13 |
تعداد شمارهها | 623 |
تعداد مقالات | 6,501 |
تعداد مشاهده مقاله | 8,622,062 |
تعداد دریافت فایل اصل مقاله | 8,211,704 |
بررسی پتانسیل آبشویی علفکش 2,4-D توسط زیستسنجی گیاهچههای سویا و خیار درسطوح مختلف کود دامی | ||
پژوهشهای تولید گیاهی | ||
دوره 30، شماره 3، مهر 1402، صفحه 141-160 اصل مقاله (889.49 K) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/jopp.2023.20951.2998 | ||
نویسندگان | ||
طاهر عجمی1؛ زینب اورسجی* 2؛ ابراهیم غلامعلی پور علمداری3؛ عبدالطیف قلی زاده4 | ||
1دانشآموخته کارشناسیارشد علوم علفهای هرز، گروه تولیدات گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبد کاووس، گنبد کاووس، ایران. | ||
2نویسنده مسئول، استادیار گروه تولیدات گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبد کاووس، گنبد کاووس، ایران. | ||
3دانشیار گروه تولیدات گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبد کاووس، گنبد کاووس، ایران. | ||
4استادیار گروه تولیدات گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبد کاووس، گنبد کاووس، ایران. | ||
چکیده | ||
سابقه و هدف: علفکشها پرکاربردترین آفتکشهای کشاورزی هستند که آلودگیهای زیست محیطی ناشی از کاربرد آنها از مهمترین عوامل تهدید کننده سلامت زیستبومها و جوامع بشری میباشد؛ از اینرو شناخت رفتار آفتکشها در محیط در جهت کاهش اثرات سوء زیستمحیطی و بهینهسازی فعالیتهای کشاورزی ضروری است. پژوهش حاضر با هدف بررسی تأثیر کود دامی بر کاهش آبشویی علفکش توفوردی از طریق زیستسنجی گیاهچههای سویا و خیار انجام شد. مواد و روشها: این آزمایش بهصورت فاکتوریل بر پایه طرح بلوکهای کامل تصادفی در سه تکرار در گلخانه تحقیقاتی دانشگاه گنبد کاووس در سال 1397 اجرا شد. عامل اول کود دامی در پنح سطح شامل شاهد (عدم کاربرد کود گاوی وعلفکش) و 0، 10، 25 و 50 درصد کود گاوی پوسیده به همراه کاربرد علفکش و عامل دوم لایههای خاک در شش سطح شامل لایههای صفر تا 2، 2 تا 4، 4 تا 6، 6 تا 8، 8 تا 10 و 10 تا 12 سانتیمتر بود. علفکش توفوردی (L%72) با دز توصیه شده دو لیتر در هکتار، 24 ساعت پس از اشباع خاک و زمانی که آب ثقلی خارج شد؛ به کار برده شد. 48 ساعت پس از اعمال علفکش به میزان 3-10×109 سیسی برای سطح مقطع 3-10×5/9 متر مربعی گلدان، در هر کدام، پنج بذر از گیاه مورد نظر کشت و در انتهای 30 روز صفات طول اندام هوایی و ریشه و وزن خشک اندام هوایی و ریشه اندازهگیری شد. یافتهها: نتایج نشان داد که عمق آبشویی توفوردی در شرایط بدون مصرف کود دامی در سویا 10 سانتیمتر و در خیار 12 سانتیمتر بدست آمد. افزودن کود دامی به میزان 10 و 25 درصد تاثیر چشمگیری بر کاهش آبشویی توفوردی نشان نداد؛ اما تیمار 50 درصد کود دامی سبب کاهش عمق آبشویی در سویا و خیار به 8 و 10 سانتیمتر شد. با افزایش 50 درصد کود دامی به دلیل افزایش جذب سطحی علفکش در لایههای 2 و 4 سانتیمتری، بازدارندگی بیشتری در صفات مورد بررسی نسبت به لایههای دیگر بروز داد و به تبع آن علفکش کمتری به لایههای بعدی خاک منتقل گردید. از سوی دیگر گیاه خیار نسبت به سویا، حساسیت بیشتری به مقادیر مختلف آبشویی علفکش توفوردی نشان داد، بهگونهای که تا لایه 8 سانتیمتری تمام تیمارهای مورد استفاده به غیر از تیمار شاهد بدون علفکش، کاهش چشمگیری در صفات اندازهگیری شده بروز دادند. به نظر میرسد که افزایش ماده آلی خاک در لایههای بیشتر از 8 سانتیمتر، در تیمار 50 درصد کود دامی، سبب بهبود رشد صفات اندازهگیری شده تا نزدیک تیمار شاهد شد. نتیجهگیری: عمق موثر آبشویی عاملی از میزان حساسیت گیاه نیز میباشد هر چه گیاه حساستر باشد به مقادیر کمتری از علفکش واکنش نشان میدهد و در نتیجه عمق موثر آبشویی برای آن گیاه افزایش مییابد. بر اساس نتایج این آزمایش خیار میتواند به عنوان گیاه محک در پایش مقادیر آبشویی علفکش توفوردی بکار برده شود. | ||
کلیدواژهها | ||
علفکش؛ عمق نفوذ؛ گیاه محک؛ ماده آلی | ||
مراجع | ||
1.Aquino, A., Tunega, D., Haberhauer, G., Gerzabek, M. & Lischka, H. (2007). Interaction of the 2,4-dichlorophenoxyacetic acid herbicide with soil organic matter moieties: atheoretical study. European Journal of Soil Science, 58, 889-899.
2.Islam, F., Farooq, M. A., Gill, R. A., Wang, J., Yang, C., Ali, B. & Zhou, W. J. (2017). 2,4-D attenuates salinity-induced toxicity by mediating anatomical changes, antioxidant capacity and cation transporters in the roots of rice cultivars. Scientific Reports, 7, 10443.
3.Charles, J. M., Hanley, T. R., Wilson, R. D., van Ravenzwaay, B. & Bus, J. S. (2001). Developmental toxicity studies in rats and rabbits on 2,4-Dichlorophenoxyacetic Acid and its forms. Toxicological Sciences, 60(1), 121-131.
4.Islam, F., Wang, J., Farooq, M. A., Khan, M. S. S., Xu, L., Zhu, J., Zhao, M., Munos, S., Li, Q. X. & Zhou, W. (2018). Potential impact of the herbicide 2,4-dichlorophenoxyacetic acid on human and ecosystems. Environment International, 111, 332-351.
5.Bozorg-Haddad, O., Delpasand, M. & Loáiciga, H. A. (2021). Water quality, hygiene, and health. In Economical, Political, and Social Issues in Water Resources. Elsevier. pp. 217-257.
6.Chowdhury, A., Pradhan, S., Saha, M. & Sanyal, N. (2008). Impact of pesticides on soil microbiological parameters and possible bioremediation strategies. Indian Journal of Microbiology, 48(1), 114-127.
7.Zimdahl, R. J. (2018). Fundamentals of Weed Science. Fifth Edit. Chapter 15 - Herbicides and Soil, 445-462.
8.Khajavi, T. M., Avarseji, Z., Gholam Alipour Alamdari, E. & Biabani, A. (2019). Evaluating the effect of pendimethalin herbicide residue on wheat and barley. Journal of Plant Productions, 42(4), 483-494. [In Persian]
9.Khajavi, T. M., Avarseji, Z., Gholamalipour Alamdari, E. & Biabani, A. (2020). Studying the sensitivity of cotton and maize to simulated imazthapyr herbicide residue. Iranian Journal of Weed Science, 16(1), 1-13. [In Persian]
10.Avarseji, Z., Gholamalipour Alamdari, E. & Ajami, T. (2021). Evaluating the effect of soil organic matter on leaching depth of Imazethapyr. Journal of Plant Protection, 34(4), 527-539. [In Persian]
11.Aggour, M., Bartls, M. & Heiteuss, R. (1997). Degradation and phyto-toxic effects of Nata after single and multiple applications. Zpflanzenk, 8, 209-212.
12.Walter, W. (2005). Mikrobieller Abbau organische Fermedstoffe im Boden. Didaktik der chemie, Univ. Bayreuth, seite 2-4. [English abstract]
13.Crespin, M. A., Gallego, M., Valcarcel, M. & Gonzalez, J. L. (2001). Study of the degradation of the herbicides 2,4-D and MCPA at different depths in contaminated agricultural soil. Environmental Science and Technology, 35, 4265. 14.Bhardwaj, G. (2007). From pioneering invention to sustained innovation: Herbicides at dupont, Chemical Heritag, Online: ChemHerit News Magazine, 25(1), 34-36.
15.Pose-Juan, E., Marín-Benito, J., Sánchez-Martín, M. & Rodríguez-Cruz, S. (2018). Dissipation of herbicides after repeated application in soils amended with green compost and sewage sludge. Journal of Environmental Management, 223, 1068-1077.
16.Kumar, N., Mukherjee, I. & Varghese, E. (2015). Adsorption–desorption of tricyclazole: effect of soil types and organic matter. Environmental Monitoring and Assessment, 187(3), 61.
17.Williams, C. F., Letey, J. & Farmer, W. J. (2006). Estimating the potential for facilitated transport of napropamide by dissolved organic matter. Soil Science Society of America Journal, 70(1), 24-30.
18.Baskaran, S., Bolan, N. S., Rahman, A. & Tillman, R. W. (1996). Pesticide sorption by allophanic and non-allophanic soils of New Zealand. New Zealand Journal of Agricultural Research, 39(2), 297.
19.Haberhauer, G., Temmel, B. & Gerzabek, M. H. (2002). Influence of dissolved humic substances on the leaching of MCPA in a soil column experiment. Chemosphere, 46, 495.
20.Ordaz-Guillén, Y., Galíndez-Mayer, C. J., Ruiz-Ordaz, N., Juárez-Ramírez, C., SantoyoTepole, F. & Ramos-and Monroy, O. (2014). Evaluating the degradation of the herbicides picloram and 2,4-D in a compartmentalized reactive biobarrier with internal liquid recirculation. Environmental Science and Pollution Research, 21, 8765-8773.
21.Chinalia, F., & Killham, K. S. (2006). 2, 4-Dichlorophenoxyacetic acid (2,4-D) biodegradation in river sediments of Northeast-Scotland and its effect on the microbial communities (PLFA and DGGE). Chemosphere, 64, 1675-1683.
22.Kearns, J., Wellborn, L., Summers, R. & Knappe, D. (2014). 2, 4-D adsorption to biochars: effect of preparation conditions on equilibrium adsorption capacity and comparison with commercial activated carbon literature data. Water Research, 62, 20-28.
23.Mountassif, D., Kabine, M., Mounchid, K., Mounaji, K., Latruffe, N., El & Kebbaj, M. H. S. (2008). Biochemical and histological alterations of cellular metabolism from Jerboa (Jaculus orientalis) by 2,4-dichlorophenoxyacetic acid, effects on D-3-hydroxybutyrate dehydrogenase. Pesticide Biochemistry and Physiology, 90, 87-96.
24.Goodman, N. 2004. Private Pesticide Applicator Training Manual. (18th ed). (p. 197). University of Minnesota Extension Service.
25.Hadizadeh, M. H. (2009). Investigation of the effects of organic matter amendments and sulfosulfuron application rates on the herbicide persistence and biological traits of soil in wheat. Ph.D. Dissertation of Ferdowsi University of Mashhad. 122 p. [In Persian]
26.El-Nahhal, Y. & Hamdona, N. (2017). Adsorption, leaching and phytotoxicity of some herbicides as single and mixtures to some crops. Journal of the Association of Arab Universities for Basic and Applied Sciences, 22, 17-25.
27.Rojas, J., Morillo, J., Usero, L., Delgado-Moreno, J. & Gan, F. (2013). Enhancing soil sorption capacity of an agricultural soil by addition of three different organic wastes. Science of the Total Environment, 458-460.
28.Singh, V., Masabnib, P., Baumanna, T., Isakeitc, M., Matochaa, T., Provina, R., Katherine, C. & Bagavathiannan, M. (2019). Activated charcoal reduces pasture herbicide injury in vegetable crops. Crop Protection, 117, 1-6.
29.Marín-Benitoa, F., María, J., Sánchez-Martína, M., Ordaxa, D., Azejjela, M. & Rodríguez-Cruza, S. (2018). Organic sorbents as barriers to decrease the mobility of herbicides in soils. Modelling of the leaching process. Geoderma, 313, 205-216.
30.Ávila, L.G.D., Leite, S.B., Dick, D.P. & Pohlmann, A.R. (2009). Atrazine formulations in xerogels: synthesis and characterization. Química Nova, 32(7), 1727-1733. | ||
آمار تعداد مشاهده مقاله: 150 تعداد دریافت فایل اصل مقاله: 145 |