- Żarski, J., Kuśmierek-Tomaszewska, R. & Dudek, S. (2020). Impact of irrigation and fertigation on the yield and quality of sugar beet (Beta vulgaris ) in a moderate climate. J. Agron. 10: 2. 150-166.
- Monteiro, F., Frese, L., Castro, S., Duarte, M.C., Paulo, S., Loureiro, J. & Romeiras, M.M. (2018). Genetic and genomic tools to asssist sugar beet improvement: the value of the crop wild relatives. Front. Plant Sci. 9: 74-85.
- Ribeiro, I.C., Pinheiro, C., Ribeiro, C.M., Veloso, M.M., Simoes-Costa, M., Evaristo, I., Paulo, O.S. & Ricardo, C.P. (2016). Genetic diversity and physiological performance of Portuguese wild beet (Beta vulgaris spp. maritima) from three contrasting habitats. Front. Plant Sci. 7: 1. 1293.
- Tomaszewska, J., Bieliński, D., Binczarski, M., Berlowska, J., Dziugan, P., Piotrowski, J., Stanishevsky, A. & Witońska, I. (2018). Products of sugar beet processing as raw materials for chemicals and biodegradable polymers. RSC Adv. 8: 6. 3161-3177.
- Lammens, T., Franssen, M., Scott, E. & Sanders, J. (2012). Availability of protein-derived amino acids as feedstock for the production of bio-based chemicals. Biomass Bioenergy. 44: 168-181.
- Tenorio, A.T., Schreuders, F., Zisopoulos, F., Boom, R. & Van der Goot, A. (2017). Processing concepts for the use of green leaves as raw materials for the food industry. J. Clean. Prod. 164: 736-748.
- Akyüz, A. & Ersus, S. (2021). Optimization of enzyme assisted extraction of protein from the sugar beet (Beta vulgaris) leaves for alternative plant protein concentrate production. Food Chem. 335: 127673.
- Kiskini, A., Vissers, A., Vincken, J.-P., Gruppen, H. & Wierenga, P.A. (2016). Effect of plant age on the quantity and quality of proteins extracted from sugar beet (Beta vulgaris) leaves. Food Chem. 64: 44. 8305-8314.
- Taleghani, D., Moharamzadeh, M., Hemayati, S.S., Mohammadian, R. & Farahmand, R. (2011). Effect of sowing and harvest time on yield of autumn-sown sugar beet in Moghan region in Iran. Seed and Plant. 27: 2. 355-371. (In persian)
- Hoffmann, C.M. & Kluge-Severin, S. (2011). Growth analysis of autumn and spring sown sugar beet. Eur. J. Agron. 34: 1. 1-9.
- Rinaldi, M. & Vonella, A.V. (2006). The response of autumn and spring sown sugar beet (Beta vulgaris ) to irrigation in Southern Italy: water and radiation use efficiency. Field Crops Res. 95: 2-3. 103-114.
- Streibie, J.C., Ritz, C., Pipper, C.B., Yndgaard, F., Fredlund, K. & Thomsen, J.N. (2009). Sugar beet, bioethanol, and climate change. IOP Publishing, Denmark.
- Basati, J., Kolivand, M., Neamati, A. & Zareii, A. (2003). Study of autumn sowing of sugar beet in the tropical areas of kermanshah province. J. Sugar Beet. 18: 2. 119-130.
- Gauch, H. 1992. Statistical analysis of regional yield trials: AMMI analysis of factorial designs. Elsevier Science Publishers, Amsterdam.
- Gauch, H.G. & Zobel, R.W. (1997). Identifying mega-environments and targeting genotypes. Crop Sci. 37: 2. 311-326.
- Ebdon, J. and Gauch, H. 2002. Additive main effect and multiplicative interaction analysis of national turfgrass performance trials: I. Interpretation of genotype× environment interaction. Crop Sci. 42: 2. 489-496.
- Olivoto, T., Lúcio, A.D.C., da Silva, J.A.G., Sari, B. & Diel, M.I. (2019). Mean Performance and Stability in Multi-Environment Trials II: Selection Based on Multiple Traits. J. Agron. 111: 6. 2961-2969.
- Kunz, M., Martin, D. & Puke, H. (2002). Precision of beet analyses in Germany explained for polarization. Sugar IND. 127: 1. 13-21.
- Reinfeld, E., Emmerich, G., Baumgarten, C., Winner & Beiss, U. (1974). Zur Voraussage des Melassez zuckersaus Ruben analysen Zucker. edn. D.A. Cooke and R. K. Scott, editors, London, UK., Chapman & Hall, World Crop Series, Pp: 2-5.
- Cook, D. & Scott, R. (1993). The sugar beet crop: science into practice. New York, USA, Champan and Hall Press, 154 p.
- Sneller, C., Kilgore-Norquest, L. & Dombek, D. (1997). Repeatability of yield stability statistics in soybean. Crop Sci. 37: 2. 383-390.
- Zobel, R. 1994. Stress resistance and root systems. In: 1–4 Aug. 1994. of the workshop on adaptation of plants to soil stresses, INTSORMIL Publ. 94–2. Inst., Univ Nebraska, Lincoln, Pp: 80–99.
- Annicchiarico, P. 1997. Joint regression vs AMMI analysis of genotype-environment interactions for cereals in Italy. Euphytica. 94: 1. 53-62.
- Rao, A. & Prabhakaran, V. (2005). Use of AMMI in simultaneous selection of genotypes for yield and stability. Jour. Ind. Soc. Ag. Statistics. 59: 76-82.
- Zali, H., Farshadfar, E., Sabaghpour, S.H. & Karimizadeh, R. (2012). Evaluation of genotype× environment interaction in chickpea using measures of stability from AMMI model. Ann. Biol. Res. 3: 7. 3126-3136.
- Zhang, Z., Cheng, L. & Zhonghuai, X. (1998). Analysis of variety stability based on AMMI model. Zuo Wu Xue Bao. 24: 3. 304-309.
- Ajay, B., Aravind, J. & Abdul Fiyaz, R. (2018). Ammistability: additive main effects and multiplicative interaction model stability parameters. R Package Ver. 11.
- Jambhulkar, N., Bose, L. & Singh, O. (2014). AMMI stability index for stability analysis. Central Rice Research Institute, Cuttack, Orissa. 35: 15-15.
- Raju, B. 2002. A study on AMMI model and its biplots. Jour. Ind. Soc. Ag. Statistics. 55: 297-322.
- Basafa, M. & Taherian, M. (2016). Analysis of stability and adaptability of forage yield among silage corn hybrids. J. Crop Breed. 8: 19. 185-191. (In persian)
- Anandan, A. & Eswaran, R. (2009). Genotype by environment interactions of rice (Oryza sativa ) hybrids in the east coast saline region of Tamil Nadu. In the Proceedings of 2nd International Rice Cong, 226 p.
- Mostafavi, K. & Saremirad, A. (2021). Genotype- environment interaction study in corn genotypes using additive main effects and multiplicative interaction method and GGE- biplot Method. Crop Production. 14: 3. 1-12. (In persian)
- Karimizadeh, R., Dehghani, H. & Dehghanpour (2008). Use of AMMI method for estimating genotype-environment interaction in early maturing corn hybrids. Seed and Plant. 23: 4. 531-546.
- Omrani, S., Omrani, A., Afshari, M., Saremirad, A., Bardehji, S. & Foroozesh, P. (2019). Application of additive main effects and multiplicative interaction and biplot graphical analysis multivariate methods to study of genotype-environment interaction on safflower genotypes grain yield. Journal of crop Breeding. 11: 31. 153-163. (In persian)
- Mostafavi, K., Rajabi, A. & Orazizadeh, M.R. (2017). Genotype- environment interaction pattern analysis for sugar beet (Beta vulgaris ) cultivars yield using AMMI multivariate method. Journal of Sugar Beet. 33: 2. 135-147. (In persian)
- Fasahat, P., Khayamim, S., Soltani Idliki, J., Darabi, S., Pedram, A., Hasani, M., Jalilian, A. & Babaei, B. (2019). Stability analysis of genotype × environment interaction effect on sugar yield in sugar beet hybrids. J Crop Breed. 11: 32. 33-40. (In persian)
- Sharifi, P., Aminpanah, H., Erfani, R., Mohaddesi, A. & Abbasian, A. (2017). Evaluation of genotype× environment interaction in rice based on AMMI model in Iran. Rice Sci. 24: 3. 173-180.
- Karimizadeh, R., Asghari, A., Chinipardaz, R., Sofalian, O. & Ghaffari, A. (2016). Determining yield stability and model selection by AMMI method in rain-fed durum wheat genotypes. Turkish J. Field Crop. 21: 2. 174-183.
- Cheloei, G., Ranjbar, G.A., Babaeian Jelodar, N., Bagheri, N. & Noori, M.Z. (2020). Using AMMI model and its parameters for yield stability analysis of rice (Oryza sativa ) advanced mutant genotypes of Tarrom-Mahalli. IJGPB. 9: 1. 70-83. (In persian)
- Ajay, B., Bera, S., Singh, A., Kumar, N., Gangadhar, K. & Kona, P. (2020). Evaluation of genotype× environment interaction and yield stability analysis in peanut under phosphorus stress condition using stability parameters of AMMI model. Agric. Res. 9: 4. 477-486.
- Sharifi, P., Abbasian, A. & Mohaddesi, A. (2021). Evaluation the mean performance and stability of rice genotypes by combining features of AMMI and BLUP techniques and selection based on multiple traits. Plant Genet. Res. 7: 2. 163-180.
|