
تعداد نشریات | 13 |
تعداد شمارهها | 623 |
تعداد مقالات | 6,502 |
تعداد مشاهده مقاله | 8,651,228 |
تعداد دریافت فایل اصل مقاله | 8,256,941 |
شناسایی ترکیبات آنتوسیانینی در 10 رقم انگور (Vitis vinifera L.) با روش HPLC-DAD | ||
پژوهشهای تولید گیاهی | ||
دوره 30، شماره 1، فروردین 1402، صفحه 225-242 اصل مقاله (1.41 M) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/jopp.2022.20456.2956 | ||
نویسندگان | ||
فاطمه صادقیان1؛ اسماعیل سیفی* 2؛ سیده ساناز رمضانپور3؛ علیرضا سلامی4 | ||
1دانشجوی دکتری گروه علوم باغبانی، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران. | ||
2نویسنده مسئول، دانشیار گروه علوم باغبانی، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران. | ||
3دانشیار گروه اصلاح نباتات و بیوتکنولوژی، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران. | ||
4دانشیار گروه علوم باغبانی، دانشکده علوم و مهندسی کشاورزی، دانشگاه تهران، کرج، ایران. | ||
چکیده | ||
سابقه و هدف: انگور یا تاک (Vitis vinifera L.) منبع مهمی از ترکیبات فنولی و آنتوسیانینی بوده و این ترکیبات خاصیت آنتیاکسیدانی و ضدسرطانی قوی دارند. آنتوسیانینها در درجه اول توسط عوامل ژنتیکی تعیین میشوند. رنگ پوست میوه در انگور، یک عامل مهم و مؤثر در شناسایی ژرمپلاسم غنی این گیاه و تحت تأثیر مقدار آنتوسیانین است. از آنجایی که حدود 250 رقم از مجموع 800-1000 ژنوتیپ انگور در ایران رشد میکنند، مطالعه ترکیبات آنتوسیانینی در منابع ژرمپلاسمی ضروری است. این مطالعه جهت بررسی تنوع ترکیبات پلیفنولی و آنتوسیانینی در 10 رقم رنگی انگور انجام شد. مواد و روشها: در این پژوهش، ارقام فلیم، کریمسون، رد گلاب، صاحبی قوچان، قرهشیره، صاحبی ارومیه، سیاه قرهباغ، ریشبابا، فلیم سیدلس و لعل بیدانه مورد بررسی قرار گرفتند. نمونههای انگور رنگی (قرمز و سیاه) زمانی برداشت شدند که مقدار قند آنها در محدوده 19-22 بود و رنگگیری کامل داشتند. میزان فنول کل در گوشت میوه با روش فولین سیوکالتو انجام شد و از اسید گالیک به عنوان استاندارد استفاده گردید. اندازهگیری فلاونوئید کل با روش کالریمتری آلومینیوم کلراید و تعیین مقدار آنتوسیانین پوست حبه به روش وانگر (1979) با کمک دستگاه اسپکتروفتومتر در طول موج 760 نانومتر انجام شد. اندازهگیری ترکیبات آنتوسیانینی در پوست حبه با روش HPLC-DAD انجام شد. تجزیه واریانس کلیه صفات مورفولوژیکی توسط نرمافزار IBM SPSS 26 و با استفاده از ANOVA یک طرفه انجام شد. همبستگی ژنوتیپها و تجزیه PCA و نقشه پراکندگی بر طبق PC1/PC2، با استفاده از نرمافزار آماری SPSS رسم شد. مقادیر فاصله بر اساس روش اقلیدسی محاسبه و دندروگرام با استفاده از روش UPGMA توسط نرمافزار آماری NCSS12 تهیه شد. یافتهها: نتایج نشان داد که بیشترین غلظت فنول کل به ترتیب مربوط به ژنوتیپ کریمسون (94/16 میلیگرم اسید گالیک بر 100 گرم)، رد گلوب (74/13 میلیگرم اسید گالیک بر 100 گرم) و فلیم (58/13 میلیگرم اسید گالیک بر 100 گرم) بود. در صورتی که، بیشترین مقدار فلاونوئید کل مربوط به رقم فلیم (47/36 میلیگرم بر 100 گرم) و رد گلوب (05/10 میلیگرم بر 100 گرم) و بیشترین مقدار آنتوسیانین کل در رقم سیاه قرهباغ (56/6 میلیگرم بر کیلوگرم) و قرهشیره (09/6 میلیگرم بر کیلوگرم) مشاهده شد. در بین ارقام مورد بررسی، کمترین میزان فنول کل در ژنوتیپ صاحبی قوچان با 88/2 میلیگرم اسید گالیک بر 100 گرم، کمترین میزان فلاونوئید کل در ژنوتیپ قرهشیره با 56/4 و همینطور کمترین میزان آنتوسیانین کل در رقم فیلم با 23/0 میلیگرم بر کیلوگرم دیده شد. مشتقات مالویدین (کفوییل گلوکوزاید) و نیز پئونیدین و سیانیدین در 100% نمونهها وجود داشتند. غلظت مالویدین در ژنوتیپ فلیم و رد گلوب در حد جزیی بود و در صاحبی ارومیه و لعل بیدانه مشاهده نشد؛ همچنین، ترکیب پلارگونیدین و مشتقات آن شناسایی نشدند. بیشترین غلظت آنتوسیانین منفرد مربوط به پئونیدین و مالویدین بود. نتایج همچنین نشان داد که بیشترین همبستگی مثبت و معنیدار بین دلفینیدین- 6-استیل گلوکوزاید و سیانیدین-6 -استیل گلوکوزاید (99/0 =r) بود. مالویدین بیشترین همبستگی را با دلفیدین و پتونیدین نشان داد. بر اساس دندروگرام تجزیه خوشهای، 10 ژنوتیپ مورد مطالعه از نظر صفات آنتوسیانینی به دو گروه اصلی تقسیم شدند. گروه اول شامل دو رقم سیاه قرهباغ و قرهشیره بود که از گروه دوم فاصله داشتند. نتیجهگیری کلی: ارقام مورد مطالعه از نظر ترکیبات منفرد آنتوسیانینی و نیز میزان فنول، فلاونوئید و آنتوسیانین کل تفاوتهای معنیداری نشان دادند. ترکیب پئونیدین و مالویدین بیشترین غلظت را در این ژنوتیپها داشتند. ژنوتیپ سیاه قرهباغ و قرهشیره بیشترین آنتوسیانین کل را نشان دادند.در رقم سیاه قرهباغ، بیشترین غلظت پئونیدین (08/54 میلیگرم بر کیلوگرم) و در رقم قرهشیره بیشترین غلظت مالویدین (78/42 میلیگرم بر کیلوگرم وزن خشک) شناسایی شدند. این دو رقم با فاصله از سایر ژنوتیپها در گروه مجزایی قرار گرفتند. | ||
کلیدواژهها | ||
آنتیاکسیدان؛ تنوع؛ فنول کل؛ مالویدین؛ PCA | ||
مراجع | ||
1.Manach, C., Scalbert, A., Morand, C., Rémésy, C. and Jiménez, L. 2004. Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr. 79: 727-747.
2.Ali, K., Maltese, F., Choi, Y.H. and Verpoorte, R. 2010. Metabolic constituents of grapevine and grape-derived products. Phytochem. Rev. 9: 357-378.
3.Archivio, D., Filesi, M., Di Benedetto, C., Gargiulo, R., Giovannini, R. and Masella, C.R. 2007. Polyphenols, Dietary Sources and Bioavailability. Ann. Ist. Super. Sanita, 43: 348.
4.Abbas, M., Saeed, F., Anjum, F.M., Afzaal, M., Tufail, T., Bashir, M.S., Ishtiaq, A., Hussain, S. and Suleria, H.A.R. 2017. Natural polyphenols: An overview. Int. J. Food Prop. 20: 8. 1689-1699.
5.Hooper, L., Kroon, P.A., Rimm, E.B. Cohn, J.S., Harvey, I., Le Cornu, K.A., Ryder, J.J., Hall, W.L. and Cassidy, A. 2008. Flavonoids, Flavonoid-Rich Foods, and Cardiovascular Risk: A Meta-Analysis of Randomized Controlled Trials. Am. J. Clin. Nutr. 88: 38-50.
6.Radovanović, B.C., Anđelković, S.M., Radovanović, A.B. and Anđelković, M.Z. 2013. Antioxidant and antimicrobial activity of polyphenol extracts from wild berry fruits grown in southeast Serbia. Trop. J. Pharm. Res. 12: 5. 813-819.
7.Turkmen, F.U., Takci, H.A.M. and Sekeroglu, N. 2017. Total phenolic and flavonoid contents, antioxidant and antimicrobial activities of traditional unripe grape products. Indian J. Pharm. Educ. Res. 51: 489-493.
8.Tagliazucchi, D., Verzelloni, E., Bertolini, D. and Conte, A. 2010. In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chem. 120: 2. 599-606.
9.Goufo, P., Singh, R.K. and Cortez, I. 2020. A Reference List of Phenolic Compounds (Including Stilbenes) in Grapevine (Vitis vinifera L.) Roots, Woods, Canes, Stems, and Leaves. Antioxidants, 9: 5. 398.
10.Oertel, A., Matros, A., Hartmann, A., Arapitsas, P., Dehmer, K.J., Martens, S. and Mock, H.P. 2017. Metabolite profiling of red and blue potatoes revealed cultivar and tissue specific patterns for anthocyanins and other polyphenols. Planta, 246: 2. 281-297.
11.Zhu, L., Zhang, Y. and Lu, J. 2012. Phenolic contents and compositions in skins of red wine grape cultivars among various genetic backgrounds and originations. Int. J. Mol. Sci. 13: 3. 3492-3510.
12.Shahab, M., Roberto, S. R., Ahmed, S., Colombo, R.C., Silvestre, J.P., Koyama, R. and De Souza, R.T. 2020. Relationship between anthocyanins and skin color of table grapes treated with abscisic acid at different stages of berry ripening. Sci. Hort. 259: 108859.
13.Downey, M.O., Dokoozlian, N.K. and Krstic, M.P. 2006. Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: a review of recent research. Am. J. Enol. Vitic. 57: 3. 257-268.
14.Gervasi, T., Oliveri, F., Gottuso, V., Squadrito, M., Bartolomeo, G., Cicero, N. and Dugo, G. 2016. Nero d’Avola and Perricone cultivars: determination of polyphenols, flavonoids and anthocyanins in grapes and wines. Nat. Prod. Res. 30: 20. 2329-2337.
15.Carreno, J. and Martinez, A. 1995. Proposal of an index for objective evaluation of the color of red table grapes. Food Res. Int. 28: 373-377.
16.Cooper-Driver, G.A. 2001. Contributions of Jeffrey Harborne and co-workers to the study of anthocyanins. Phytochem. 56: 229-236.
17.Zhang, Q., Zhang, J., Shen, J., Silva, A., Dennis, D.A. and Barrow, C.J. 2006. A simple 96-well microplate method for estimation of total polyphenol content in seaweeds. J. Appl. Phycol. 18: 3. 445-450.
18.Pomar, F., Novo, M. and Masa, A. 2005. Varietal differences among the anthocyanin profiles of 50 red table grape cultivars studied by high performance liquid chromatography. J. Chromatogr. A. 1094: 34-41.
19.Stevenson, D. and Scalzo, J. 2012. Anthocyanin composition and content of blueberries from 730 around the world. J. Berry Res. 2: 179-189.
20.Fong, R.A., Webb, A.D. and Kepner, R.E. 1974. Acylatedanthocyanins in a hybrid Vitis variety. Phytochem. 13: 6. 1001-1004.
21.Morais, H., Ramos, C., Forgacs, E., Cserhati, T. and Oliiera, J. 2002. Influence of storage conditions on the stability of monomeric anthocyanins studied by reversed phase high performance liquid chromatography. J. Chromatog. B. 770: 297-301.
22.Rusjan, D., Korosec-Koruza, Z. and Veberic, R. 2008. Primary and secondary metabolites related to the quality potential of table grape varieties (Vitis vinifera L.). Eur. J. Hort. Sci. 73: 3. 124.
23.Castillo-Muñoz, N., Gómez-Alonso, S., García-Romero, E. and Hermosín-Gutiérrez, I. 2010. Flavonol profiles of Vitis vinifera white grape cultivars. J. Food Compos. Anal. 23: 7. 699-705.
24.Pinasseau, L., Verbaere, A., Roques, M., Meudec, E., Vallverdú-Queralt, A., Terrier, N., Boulet, J.C., Cheynier, V. and Sommerer, N. 2016. A fast and robust UHPLC-MRM-MS method to characterize and quantify grape skin tannins after chemical depolymerization. Molecules. 21: 10. 1409.
25.Cantos, E., Espin, J.C. and Tomás-Barberán, F.A. 2002. Varietal differences among the polyphenol profiles of seven table grape cultivars studied by LC− DAD− MS− MS. J. Agric. Food Chem. 50: 20. 5691-5696.
26.Flamini, R., Mattivi, F., Rosso, M.D., Arapitsas, P. and Bavaresco, L. 2013. Advanced knowledge of three important classes of grape phenolics: anthocyanins, stilbenes and flavonols. Int. J. Mol. Sci. 14: 10. 19651-19669.
27.Doulaty Baneh, H., Grassi, F., Mohammadi, A., Nazemieh, A., De Mattia, F., Imazio, S. and Labra, M., 2007. The use of AFLP and morphological markers to study Iranian grapevine germplasm to avoid genetic erosion. J. Hort. Sci. Biotechnol. 82: 5. 745-752. 28.Najafi, J., Alipanah, L., Ghareyazie, B., Mohammadi, S.A., Hagh Nazari, A. and This, P. 2006. Genetic diversity of Iranian and some of European grapes revealed by microsatellite markers. Iran. J. Biotech. 4: 36-44.
29.FAO (Food and Agriculture Organization of the United Nations). 2018. FAOSTAT statistical database. FAO, Rome, Italy.
30.Slinkard, K. and Singleton, V.L. 1977. Total phenol analysis: automation and comparison with manual methods. Am. J. Enol. Vitic. 28: 1. 49-55.
31.Wagner, G.J. 1979. Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts. Plant physiol. 64: 1. 88-93.
32.Kedrina-Okutan, O., Novello, V., Hoffmann, T., Hadersdorfer, J., Occhipinti, A., Schwab, W. and Ferrandino, A. 2018. Constitutive polyphenols in blades and veins of grapevine (Vitis vinifera L.) healthy leaves. J. Agric. Food Chem. 66: 42. 10977-10990. 33.Colombo, R.C., Roberto, S.R., da Cruz, M.A., de Carvalho, D.U., Yamamoto, L.Y., Nixdorf, S.L. and Hermosin-Gutierrez, I. 2021. Characterization of the phenolic ripening development of ‘BRS Vitoria’seedless table grapes using HPLC–DAD–ESI-MS/MS. J. Food Compos. Anal. 95: 103693.
34.Mazza, G. and Brouillard, R. 1987. Recent developments in the stabilization of anthocyanins in food products. Food Chem. 25: 3. 207-225.
35.Spinardi, A., Cola, G., Gardana, C.S. and Mignani, I. 2019. Variation of anthocyanin content and profile throughout fruit development and ripening of highbush blueberry cultivars grown at two different altitudes. Front. Plant Sci. 1045.
36.Pejman Mehr, M., Ebadi, A., Mousavi, A., Walker, A.R. and Rahimi, A. 2015. A quantitative and qualitative study of anthocyanins and flavonols in the skin of several grape cultivars using high performance liquid chromatography (HPLC). Quar. J. Med. Plants. 4: 56. 123-137. (In Persian)
37.Du, B., He, B.J., Shi, P.B., Li, F.Y., Li, J. and Zhu, M. 2012. Phenolic content and antioxidant activity of wine grapes and table grapes. J. Med. Plant Res. 6: 17. 3381-3387.
38.Fang, J., Jogaiah, S., Guan, L., Sun, X. and Abdelrahman, M. 2018. Coloring biology in grape skin: a prospective strategy for molecular farming. Physiologia plantarum, 164: 4. 429-441.
39.Mattivi, F., Guzzon, R., Vrhovsek, U., Stefanini, M. and Velasco, R. 2006. Metabolite profiling of grape: flavonols and anthocyanins. J. Agric. Food Chem. 54: 20. 7692-7702.
40.Cacho, J., Fernandez, P., Ferreira, V. and Castells, J.E. 1992. Evolution of five anthocyanidin-3-glucosides in the skin of the Tempranillo, Moristel, and Garnacha grape varieties and influence of climatological variables. Am. J. Enol. Vitic. 43: 244-248.
41.Albuquerque, B.R., Heleno, S.A., Oliveira, M.B.P., Barros, L. and Ferreira, I.C. 2021. Phenolic compounds: Current industrial applications, limitations and future challenges. Food Func. 12: 1. 14-29.
42.Proteggente, A.R., Saija, A., De Pasquale, A. and Rice-Evans, C.A. 2003. The compositional characterisation and antioxidant activity of fresh juices from sicilian sweet orange (Citrus sinensis L. Osbeck) varieties. Free Radic. Res. 37: 6. 681-687.
43.Schulz, E., Tohge, T., Zuther, E., Fernie, A.R. and Hincha, D.K. 2015. Natural variation in flavonol and anthocyanin metabolism during cold acclimation in Arabidopsis thaliana accessions. Plant, Cell Environ. 38: 8. 1658-1672. | ||
آمار تعداد مشاهده مقاله: 355 تعداد دریافت فایل اصل مقاله: 264 |