
تعداد نشریات | 13 |
تعداد شمارهها | 623 |
تعداد مقالات | 6,501 |
تعداد مشاهده مقاله | 8,626,926 |
تعداد دریافت فایل اصل مقاله | 8,222,184 |
بررسی تنوع زیستی گیاهی در یک چشم انداز کشاورزی (مطالعه موردی: دشت ناز ساری) | ||
پژوهشهای تولید گیاهی | ||
دوره 29، شماره 4، دی 1401، صفحه 1-24 اصل مقاله (1.45 M) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/jopp.2021.18919.2790 | ||
نویسندگان | ||
مصطفی کوزه گر کالجی1؛ حسین کاظمی* 2؛ بهنام کامکار3؛ حمید امیر نژاد4؛ محسن حسینعلی زاده5 | ||
1دانشجوی دکتری اکولوژی گیاهان زراعی، گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران | ||
2نویسنده مسئول، دانشیار گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران. | ||
3استاد گروه اگروتکنولوژی، دانشگاه فردوسی مشهد، مشهد، ایران | ||
4استاد گروه اقتصاد کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران. | ||
5دانشیار گروه مدیریت مناطق بیابانی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران | ||
چکیده | ||
سابقه و هدف: در طول نیم قرن گذشته، کشاورزی فشرده به طرز چشمگیری افزایش یافته است و چشماندازهای کشاورزی به سامانههای تک محصولی ساده با پوشش کم، مشابه زیستگاههای نیمهطبیعی تبدیل شده است. این روند منجر به کاهش شدید تنوع زیستی و کاهش ارایه خدمات بومسازگان به کشاورزی شده است. اثبات شده است که در مقایس جهانی در بین انواع خدمات بوم-سازگان، کنترل آفات و گیاهانهرز و گردهافشانی تأثیر قابل توجهی بر تولید محصولات کشاورزی جهانی دارد. این مطالعه با هدف بررسی تنوع زیستی گیاهی قطعات گندم، کلزا، جو و تریتیکاله در یک چشمانداز کشاورزی (دشت ناز ساری) انجام شد. مواد و روشها: این آزمایش به صورت طرح کاملاً تصادفی نامتعادل در یک چشمانداز کشاورزی واقع در منطقه دشت ناز ساری (استان مازندران) در سال زراعی 99-1398 اجرا شد. در این بررسی 26 مزرعه از قطعات مختلف کشت پاییزه شامل کلزا، گندم، جو و تریتیکاله انتخاب شدند و نمونهبرداری از وضعیت تنوع زیستی گیاهی با الگوی W و با کودرات با ابعاد 5/0×5/0متر مربعی انجام شد. نمونهها به آزمایشگاه تحقیقات زراعی دانشگاه علوم کشاورزی و منابع طبیعی گرگان منتقل شدند و فلور گیاهی به تفکیک جنس و گونه تعیین گردید. سپس شاخصهای تنوع مختلف زیستی شامل شانون- واینر، مارگالف، منهنیک، سیمپسون، یکنواختی و سورنسون با استفاده از معادلههای مربوطه محاسبه گردید. در انتها براساس نتایج، وضعیت تنوع زیستی در سطح چشمانداز کشاورزی با در نظر گرفتن وضعیت اجزای آن شامل نوع قطعات، کوریدور، حاشیه، مرز و غیره تحلیل شد. یافتهها: در این بررسی 25 گونه گیاهی متعلق به 14 خانواده شناسایی شدند که 10 گونه به باریکبرگها و 15 گونه به پهنبرگها تعلق داشت. از بین گونههای شناسایی شده بیشترین فراونی را گیاهانهرز شلمبیک(Rapistrum rugosum)، یولاف وحشی (Avena ludoviciana)، خونیواش(Phalaris minor) و کنگر صحرایی(Cirsium arvense) داشتند. نتایج نشان داد که تنوع زیستی گیاهی موجود در این چشمانداز براساس شاخص شانون- واینر در وضعیت مطلوب قرار دارد، بطوریکه این شاخص در قطعات تریتیکاله، جو، کلزا و گندم به ترتیب 64/2، 52/2، 39/2 و 38/2 برآورد شد. محاسبه شاخص تنوع گونهای منهنیک برای قطعات پاییزه کلزا، جو، گندم و تریتیکاله به ترتیب 86/2، 85/2، 45/2، 32/2 بدست آمد. همچنین بیشترین میزان شاخص تنوع گونهای سیمپسون در مزارع کلزا، جو، گندم و تریتیکاله به ترتیب 068/0 ، 047/0 ، 070/0 و 052/0 بود. براساس نتایج بیشترین شباهت بر اساس شاخص سورنسون به ترتیب مربوط به قطعات تریتیکاله (1)، جو (95/0)، گندم (95/0) و کلزا (93/0) بود. نتیجهگیری: بطورکلی نتایج نشان داد مصرف کود دامی در برخی از قطعات چشم انداز، قرارگیری نهرهای آب و زمینهای بایر در حاشیه قطعات و نیز وجود کریدوری از درختان به عنوان بادشکن، توانست بر وضعیت تنوع زیستی چشمانداز مورد مطالعه تاثیرگذار باشد. نتایج به دست آمده از این مطالعه میتواند در ایجاد یک برنامه مدیریت جامع گیاهانهرز و تصمیمگیری در مورد انتخاب روش کنترل و یا بهبود ارایه خدمات بومسازگانی توسط تنوع زیستی گیاهی مفید باشد. | ||
کلیدواژهها | ||
تنوع زیستی؛ خدمات بومسازگان؛ چشمانداز کشاورزی | ||
مراجع | ||
1.Louloudis, L., Beopoulos, N. and Troumbis, A. 2005. The Rural Landscape. A palimpsest of ages of agricultural pains, Ktima Merkouri: Korakohori Ilias,(In Greek)
2.Foley, J.A., DeFries, R., Gregory, P., Barford, C., Bonan, G., Carpenter, S.R., Stuart Chapin, F., Coe, M.T., Daily, G.C., Gibbs, H.K., Helkowski, J.H., Tracey Holloway, E.A., Kucharik, C.J., Monfreda, C., Patz, G.A., Prentice, G.I., Ramankutty, N. and Snyder, P.K. 2005. Global Consequences of Land Use. Science. 309: 570-574. https://doi.org/ 10.1126/science.1111772.
3.Tilman, D., Fargione, J., Wolff, B.,C D'Antonio, C., Dobson, A., Howarth, R., Schindler, D., Schlesinger, W.H., Simberloff, D. and Swackhamer, D. 2001. Forecasting agriculturally driven global environmental change. Sci. 292: 281-84, https://doi.org/10.1126/science.1057544.
4.Diaz, S., Fargione, J., Chapin, F.S. and Tilman, D. 2006. Biodiversity loss threatens human well-being. Plos Biol. 4: 1300–1305, https://doi.org/10.1371/ journal.pbio.0040277. 5.Haddad, N.M., Crutsinger, G.M., Gross, K., Haarstad, J. and Tilman, D. 2011. Plant diversity and the stability of foodwebs. Ecol. Lett. 14: 42-46, https:// doi.org/ 10.1111/ j.1461-0248. 2010. 01548.x.
6.Grab, H., Danforth, B., Poveda, K. and Loeb, G. 2018. Landscape simplification reduces classical biological control and crop yield. Ecol. Appl. 28: 348-355, https://doi.org/10.1002/eap.1651.
7.Meehan, T.D., Werling, B.P., Landis, D. A. and Gratton, C. 2011. Agricultural landscape simplification and insecticide use in the Midwestern United States. PNAS. 108: 11500-11505, https://doi.org/ 10.1073/pnas.1100751108.
8.Rusch, A., Chaplin-Kramer, R., Gardiner, M. and Hawro, V. 2016. Agricultural landscape simplification reduces natural pest control: A quantitative synthesis. Agric. Ecosyst. Environ. 221: 198-204, https://doi.org/10.1016/j.agee.2016.01.039.
9.Dainese, M., Poppenborg, M., Azien, M.A. and Albrecht, M. 2019. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv.5, eaax0121. (doi:10.1126/sciadv.aax0121).
10.Tilman, D. 1999. Global environmental impacts of agriculture expansion: the need of sustainable and efficient practices. Proc. Natl Acad. Sci. USA. 96: 5595-6000. (doi:10.1073/pnas.96. 11.5995).
11.Bourgeois, B., Munoz, F., Fried, G., Mahaut, L., Armengot, L., Denelle, P., Storkey, J., Gaba, S. and Violle, C. 2019. What makes a weed a weed? A large-scale evaluation of arable weeds through a functional lens. Am. J. Bot. 106: 90-100. (doi:10.1002/ajb2.1213).
12.Godinho, I. 1984. Les définitions d’‘adventice’ et de ‘mauvaise herbe’. Weed Res. 24: 121-125. (doi:10. 1111/j.1365-3180.1984.tb00579.x).
13.Storkey, J. and Neve, P. 2018. What good is weed diversity? Weed Res.58: 239-243. (doi:10.1111/ wre.12310).
14.Hakansson, S. 2003. Weeds and weed management on arable land: an ecological approach. Oxon, UK: CABI Publishing.
15.Potts, G.R., Ewald, J.A. and Aebischer, N.J. 2010. Long-term changes in the flora of the cereal ecosystem on the Sussex Downs, England, focusing onthe years 1968-2005. J. Appl. Ecol.47: 215-226.
16.Albrecht, H. 2003. Suitability of arable weeds as indicator organisms to evaluate species conservation effects of management in agricultural ecosystems. Agric. Ecosyst. Environ. 98: 201-211.
17.Franke, A.C., Lotz, L.A.P., Vanderburg, W.J. and Van overbeek, L. 2009.The role of arable weed seeds for agroecosystem functioning. Weed Res. 49: 131-141.
18.Norris, R.F. and Kogan, M. 2005. Ecology of interactions between weeds and arthropds. Annu. Rev. Entomol.50: 479-503.
19.Gabriel, D. and Tscharntke, T. 2006. Insect pollinated plants benefit from organic farming. Agric. Ecosyst. Environ. 118: 43-48.
20.Well, R.R. 1982. Maize-weed competition and soil erosion in unweeded maize. Trop. Agric. 59: 207-213.
21.Altieri, M.A. 1999. The ecological role of biodiversity in agroecosystems. Agric. Ecosyst. Environ. 74: 19-31.
22.Marshall, E.J.P., Brown, V.K., Boatman, N.D., Lutman, P.J.W., Squire, G.R. and Ward, L.K. 2003. The role of weeds in supporting biological diversity within crop fields. Weed Res. 43: 77-89.
23.Storkey, J. and Westbury, D.B. 2007. Managing arable weeds for biodiversity. Pest Manag. Sci. 63: 517-523.
24.Nentwig, W., Farnk, T. and Lethmayer, C. 1998. Sown weed strips: Artificial ecological compensation areas as an important tool in conservation biological control. P. Barbosa (Ed.), Conservation biological control. San Diego USA: Academic Press.
25.Schellhorn, N.A. and Sork, V.L. 1997. The impact of weed diversity on insect populations dynamics and crop yield in collards, Brassica oleracea (Brassicaceae). Oecologia. 111: 233-240.
26.Boatman, N.D., Hart, A., Clook, M., Brown, V.K., Holland, J.M. and Lutman, P.J.W. 2003. A risk assessment framework for determining the effects of pesticides on farmland. Proceedings of the BCPC International Congress - Crop Science and Technology. pp. 239-244.
27.Hawes, C., Haughton, A.J., Osborne, J.L., Roy D.B., Clark S.J., Perry, J.N., Rothery, P., Bohan, D.A., Brooks, D.R., Champion, G.T., Dewar, A.M., Heard M.S., Woiwod, I.P., Daniel, R.E., Younng, M.W., Parish, A.M., Scott, R.J., Firbank, L.G. and Squire, G.R. 2003. Responses of plants and invertebrate trophic groups to contrasting herbicide regimes in the Farm Scale Evaluations of genetically modified herbicide-tolerant crops. Philos. Trans. R. Soc. B. 358: 1899-1913.
28.Storkey, J. 2006. A functional group approach to the management of UK arable weeds to support biological diversity. Weed Res. 46: 513-522.
29.Ekstrom, G. and Ekbom, B. 2011.Pest control in agro-ecosystems:an ecological approach. Crit. Rev. Plant Sci. 30: 74-94.
30.Klein, A.M., Vaissiere, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C. and Tscharntke, T. 2007. Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biol. Sci. 274: 303-313. 31.Furlong, M.J. and Zalucki, M.P. 2010. Exploiting predators for pest management: the need for sound ecological assessment. Entomol. Exp. Appl. 135: 225-236.
32.Armengot, L., José-María, L., Chamorro, L. and Sans, F.X. 2013. Weed harrowing in organically grown cereal crops avoids yield losses without reducing weed diversity. Agron. Sustain. Dev. 33: 2. 405-411.
33.Kleofas Berbeć, A. and Feledyn-Szewczyk, B. 2018. Biodiversity of weed and soil seed bank in organic and conventional farming systems. Agric. Sci. 2: 12-19. DOI: 10.22616/ rrd.24. 2018.045.
34.Sawicka, B., Krochmal-Marczak, B., Barba´s, P., Pszczółkowski, P. and C´wintal, M. 2020. Biodiversity of Weeds in Fields of Grain in South-Eastern Poland. Agric. 10 (589): 1-17. doi:10.3390/agriculture10120589.
35.Agricultural Statistics. 2017. Ministry of Jihad Agriculture, Deputy of Planning and Economy of Information and Communication Technology Center.pp. 1-403. (In Persian)
36.Moeini Minbashi, M., Ebtali, Y., Esfandiyari, H., Adiham, H., Brajasteh, A., Pourazar, R., Jahedi, A., Jafarzadeh, N., Jamali, M.R., Hosseini, S.M., Sarani, M., Sarihi, S., Sabahi, N., Salahiardakani, A., Tabatabaei, R., Qasemi, M.T., Lak, M.R., Mousavi, S.K., Maknali, A., Saeidi Naeini, F., Mirvakili, S.M., Nazer Kakhki, S.H., Narimani, V., Nourozzadeh, Sh., Vaesi, M. and Younes Abadi, M. 2012. Preparation of weed distribution map of irrigated wheat fields using geographic information system (GIS). Agron. J.95: 22-31.
37.Simpson, E.H. 1949. Measurement of diversity. Nature. 163:688.
38.Benton, T.G., Vickery, J.A. and Wilson, J.D. 2003. Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol. Evol. 18: 182-188. (doi: 10.1016/S0169- 5347(03)00011-9).
39.Shannon, C.E. and Weaver, W.1949. The mathematical theory of communication. University IIlinois Press, Urbana, IL.
40.Margalef, R. 1958. Information theory in ecology. General systematic. 3: 36-73.
41.Menhinick, E.F. 1964. A comparison of some species-individuals diversity indices applied to samples of field insects. Ecol. 45: 859-861.
42.Pielou, E.C. 1934. The life forms of plants and statistical plant geography. Oxford: Clarendon Press.
43.Magurran, A.E. 1988. Ecological Diversity and its Measurements. New Jersey, NJ: Princeton University Press. p. 179.
44.Diepeningena, A., Vosa, O.J., Korthalsb, G.W. and Bruggena, A.H.C. 2006. Effects of organic versus conventional management on chemical and biological parameters in agricultural soils. Appl. Soil Ecol. 31: 120-135.
45.Kamkar, B., Bagherani Tarshiz, N. and Razavi, S.E. 2014. Evaluation of health of crop systems under wheat cultivation in Gharasoo area (Gorgan city) based on weed diversity, yield and pesticide consumption. J. Plant Prod. Res. 21: 3. 97-116. (In Persian) 46.Jackson, L.E., Pascual, U. and Hodgkin, T. 2007. Utilizing and conserving agrobiodiversity in agricultural landscapes, Agric. Ecosyst. Environ. 121: 196-210.
47.Moonen, A.C. and Barberi, P. 2008. Functional biodiversity: an agroecosystem approach. Agric. Ecosyst. Environ. 127: 7-21. 48.Brookfield, H. and Stocking, M. 1999. Agrodiversity: Definition, description and design. Glob. Environ. Chang. 9: 77-80.
49.Ejtehadi, H., Sepehri, A. and Akafi, H. R. 2009. Biodiversity measurement methods. Ferdowsi University Press, Mashhad.
50.Krebs, C.J. 1999. Ecological methodology. 2nd ed. Addison Wesley Longman, Menlo Park, California, USA.
51.Mada, D., Duniya, N. and Adams, I.G. 2013. Effect of continuous application of herbicide on soil and environment with crop protection machinery in Southern Adamawa state. Int. J. Eng. Sci. 2: 6. 4-9.
52.Zou, Y., Bianchi, F.J.J.A., Jauker, F., Xiao, H., Chen, J., Cresswell, J., Luo, S., Huang, J., Deng, X., Hou, L. and Wer, W.V. 2017. Landscape effects on pollinator communities and pollination services in small-holder agroecosystems. Agric. Ecosyst. Environ. 246: 109-116.
53.Kazemi, H., Niazmoradi, M., Poorshirazi, S. and Sharifi, N. 2018. Assessment of the biodiversity ofcrops and horticultural products in Golestan province, 1998-2014. Agroecol. 8: 2. 47-67. (In Persian)
54.Shrestha, R.P., Schmidt-Vogt, D. and Gnanavelrajah, N. 2010. Relating plant diversity to biomass and soil erosion in a cultivated landscape of the eastern seaboard region of Thailand. Appl. Geograph. 30: 4. 606-617.
55.Mahmoudi, Q., Jafari, L. and Khorram Del, S. 2014. Evaluation of ecological indicators of dill weed diversity under the influence of planting date andweed control stage. First International Congress, 13th National Congress of Crop Science and Plant Breeding, and 3rd Conference on Seed Technology.pp. 1-5. (In Persian)
56.Ludwig, J.A. and Reynolds, J.F. 1988. Statistical Ecology: A Primer on Methods and Computing. New York, NY: John Wiley & Sons. 338p.
57.Moreno, C.E. 2001. Métodos para medir la biodiversidad. 1st ed. M & T Manuales y Tesis SEA: Zaragoza. 84p.
58.Kanieski, M.R., Longhi, S.J. and Araujo, A.C.B. 2010. Quantificação da biodiversidade em floresta ombrófila mista por meio de diferentes índices alfa. Sci. For. 38: 88. 567-577.
59.Kanieski, M.R., Longhi, S.J. and Ricardo Casemiro Soares, P. 2018. Methods for Biodiversity Assessment: Case Study in an Area of Atlantic Forest in Southern Brazil. Selected Studies in Biodiversity. 45-58.http:// dx.doi.org/ 10.5772/ intechopen.71824.
60.Noroozzadeh, Sh., Rashid Mohasel, M., Nasiri Mahalati, M., Koocheki, A. and Abbaspour, M. 2008. Evaluation of species diversity, function and structure of weed communities of wheat fields in North, South and Razavi provincesof Khorasan. IAR. 6: 2. 471-485.(In Persian)
61.Javadzadeh, S.M. and Saljooghianpour, M. 2018. Biodiversity of agronomical crops in Sistan and Balouchestan Province, Iran. Agroecol. J. 14: 2. 31-50. (In Persian) | ||
آمار تعداد مشاهده مقاله: 1,149 تعداد دریافت فایل اصل مقاله: 424 |