
تعداد نشریات | 13 |
تعداد شمارهها | 623 |
تعداد مقالات | 6,502 |
تعداد مشاهده مقاله | 8,647,531 |
تعداد دریافت فایل اصل مقاله | 8,248,560 |
تاثیر تابش پرتوی فرابنفش و محلولپاشی برخی از تنظیم کننده های رشد بر ویژگیهای عملکردی و ظاهری شنبلیله Trigonella foenum-graecum L.)) | ||
پژوهشهای تولید گیاهی | ||
دوره 29، شماره 1، فروردین 1401، صفحه 133-154 اصل مقاله (798.76 K) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/jopp.2021.18867.2785 | ||
نویسندگان | ||
زهرا حاجی پور1؛ حسن مومیوند* 2؛ علیرضا شایگانفر3؛ امین ابراهیمی4 | ||
1دانشجوی کارشناسیارشد گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه لرستان، خرمآباد، ایران. | ||
2نویسنده مسئول، استادیار گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه لرستان، خرمآباد، ایران. | ||
3استادیار گروه مهندسی علوم باغبانی و فضای سبز، دانشکده کشاورزی، دانشگاه ملایر، ملایر، ایران | ||
4استادیار گروه زراعت و اصلاح نباتات، دانشکده مهندسی کشاورزی، دانشگاه صنعتی شاهرود، سمنان، ایران | ||
چکیده | ||
سابقه و هدف: افزایش تابش پرتوی فرابنفش بهویژه فرابنفش-ب، به عنوان یکی از پیامدهای تغییر اقلیم، قادر به اخلال در رشد و نمو گیاهان است. پرتوی فرابنفش بر رشد و متابولیسم گیاه تاثیر میگذارد. مطالعات مختلف نشان دادهاند که افزایش پرتوی فرابنفش-ب میتواند اثرات زیان آوری بر فرآیندهای فیزیولوژیکی و رشد کلی بعضی از گیاهان داشته باشد. استفاده از ترکیبات یا تنظیم کنندههای رشد به صورت برونزا در بسیاری از موارد در کاهش اثرات تنشهای محیطی موثر بوده است. مطالعه حاضر به منظور بررسی تاثیر پرتوی فرابنفش آ و ب و محلولپاشی ملاتونین و آسکوربیکاسید بر رشد، زیتوده گیاهی و خصوصیات ظاهری و روزنهای شنبلیله انجام گرفت. مواد و روشها: آزمایش به صورت کرتهای خرد شده در قالب طرح کامل تصادفی اجرا شد. تیمار تابش پرتوی فرابنفش در چهار سطح (شاهد، تابش پرتوی فرابنفش-آ، تابش پرتوی فرابنفش-ب و تابش پرتوی فرابنفش آ + ب) به عنوان عامل اصلی و کاربرد ترکیبات تعدیل کنندهی تنش در چهار سطح (شاهد، ملاتونین، آسکوربیک اسید و ملاتونین + آسکوربیک اسید) به عنوان عامل فرعی در نظر گرفته شد. در پایان آزمایش صفات ارتفاع بوته، عرض بوته، تعداد برگ، طول برگچه، عرض برگچه، طول دمبرگ، قطر طوقه، وزن تر و خشک اندام هوایی، وزن تر برگ، تعداد شاخههای جانبی، تعداد میانگره، طول و عرض سلول محافظ روزنه، شاخص روزنهای، تراکم روزنهای، محتوای کلروفیل و کاروتنوئید اندازهگیری شد. دادهﻫﺎی بهدست آمده از آزمایش ﺑﺎ اﺳﺘﻔﺎده از ﻧﺮم افزار Minitab ﻣﻮرد ﺗﺠﺰﻳه آﻣﺎری ﻗﺮار ﮔﺮﻓﺘﻨﺪ. مقایسهی ﻣﻴﺎﻧﮕﻴﻦﻫﺎ ﻧﻴﺰ ﺑﺎ اﺳﺘﻔﺎده از روش آزمون LSD در سطح 05/0 انجام ﮔﺮﻓﺖ. یافتهها: نتایج نشان داد که پرتوی فرابنفش-آ علیرغم کاهش تعداد شاخههای جانبی (%63/15) ، باعث افزایش وزن تر برگ، قطر طوقه، طول دمبرگ، طول و عرض برگچه، ارتفاع و عرض بوته، وزن تر اندام هوایی (%17/12) ، وزن خشک اندام هوایی، تعداد میانگره و میزان کلروفیل-آ (%4/7) و کلروفیل-ب (%5/3) شد. بر خلاف این تیمار فرابنفش-ب و فرابنفش آ + ب باعث کاهش اغلب صفات مورد مطالعه شامل ارتفاع بوته (%09/8)، طول و عرض برگچه، طول دمبرگ، کلروفیل آ، کلروفیل ب، کلروفیل آ+ب، وزن تر و خشک بوته و وزن تر برگ شد. با این وجود میزان کاروتنوئید، تعداد شاخههای جانبی (%58/6) و شاخص روزنهای (%4/11) را افزایش دادند. کاربرد آسکوربیک اسید و ملاتونین باعث کاهش اثرات منفی تابش فرابنفش در شنبلیله گردید. در شرایط عدم تیمار فرابنفش و تیمار فرابنفش-آ، محلول پاشی آسکوربیک اسید اثرات بهتری بر صفات مورد مطالعه بر جا گذاشت و بیشترین میزان ارتفاع بوته، تعداد شاخه جانبی، تعداد برگ، طول و عرض برگچه، کلروفیل، کاروتنوئید، شاخص روزنه و تراکم روزنه را به خود اختصاص داد. در حالی که در شرایط تابش فرابنفش-ب و فرابنفش آ + ب، محلول پاشی هر دو ترکیب ملاتونین و آسکوربیک اسید نتایج بهتری به همراه داشت. بنابراین میتوان گفت که اثر هم افزایی این دو ترکیب در تعدیل اثرات تنش فرابنفش در شنبلیله قابل توجه بود. نتیجهگیری: در این مطالعه تابش فرابنفش-ب و تابش همزمان فرابنفش-آ و ب منجر به کاهش رشدونمو شنبلیله شد. بر خلاف این، پرتوی فرابنفش-آ باعث بهبود عملکرد و صفات ظاهری گیاه گردید. علاوه بر این، حلولپاشی ملاتونین و آسکوربیکاسید باعث کاهش آسیبهای ظاهری و شاخصهای رشدی ناشی از تیمار پرتوی فرابنفش-ب شد. | ||
کلیدواژهها | ||
Trigonella foenum-graecum L؛ فرابنفش؛ روزنه؛ ملاتونین؛ آسکوربیک اسید | ||
مراجع | ||
1.Khan, T., Mazid, M. and Mohammad, F. 2011. A review of ascorbic acid potentialities against oxidative stress induced in plants.J. Agrobiol. 28: 2. 97-111.
2.Ranjbar, A. and Musavi, S.A. 2018.The effects of Enhanced Ultraviolet-B Radiation and Heavy Metal Cadmium on Some Physiological Parameters of Lettuce (Lactuca sativa). J. Plant Res.30: 4. 853-861. (In Persian)
3.McKenzie, R.L., Aucamp, P.J., Bais, A.F., Björn, L.O., Ilyas, M. and Madronich, S. 2011. Ozone depletion and climate change: impacts on UV radiation. Photochem. Photobiol. Sci. 10: 2. 182-198.
4.Marino, B., Hernandez-Ruiz, A. and Hernandez-Ruiz, J. 2015. Functions of melatonin in plants: a review. J. Pineal Res. 59: 133-150.
5.Xalxo, R. and Keshavkant, S. 2019. Melatonin, glutathione and thiourea attenuates leadand acid rain-induced deleterious responses by regulating gene expression of antioxidants in Trigonella foenum graecum L., Chemosphere.
6.Malik, S., Ashraf, M., Arshad, M. and Malik, T.A. 2015. Effect of ascorbic acid application on physiology of wheat under drought stress. Pak. J. Biol. Agric. Sci.52: 209-217.
7.Hosseini Sarghein, S., Carapetian, J. and Khara, J. 2012. Effects of uv-radiationon some physiological parameters in capsicum longum L. J. Plant Prod.34: 3. 27-40.
8.Hasan, M.K., Ahammed, G.J., Yin, L., Shi, K., Xia, X., Zhou, Y., Yu, J. and Zhou, J. 2015. Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L. Front. Plant Sci. 6: 601. 9.Qian, M., Rosenqvist, E., Flygare, N. M., Kalbina, I., Teng, Y., Jansen, M.A.K. and Strid, A. 2020. UV-A light induces a robust and dwarfed phenotype in cucumber plants (Cucumis sativus L.) without affecting fruit yield. Sci. Hort. 263: 109-110.
10.Kumari, R. and Agrawal, S.B. 2010. Supplemental UV-B induced changes in leaf morphology, physiology, and secondary metabolites of an Indian aromatic plant Cymbopogon citratus (D.C.) Staph under natural field conditions. Int. Journal Environ. Stud. 67: 655-675.
11.Debnath, B., Hussain, M., Irshad, M., Mitra, S., Min, L., Liu, S. and Qiu,D. 2018. Exogenous melatoninmitigates acid rain stress to tomato plants through modulation of leaf ultrastructure, photosynthesis and antioxidant potential. Mol. 23: 2. 388.
12.Farooq, M., Shankar, U., Ray, R.S., Agrawel, N., Verma, K. and Hans, R. K. 2005. Morphological and metabolic alterations in duckweed Spirodela polyrhiza on long term low level chronic exposure. Ecotoxicol. Environ. Saf.62: 408-414.
13.Hagihosseinlo, N., Hosseini Sargein, S. and Jamei, R. 2016. The study of interactive effects of UV-B Radiation and drought stress on some physiological traits of two cultivar of gourd (Cucurbita pepo L.). Iran. J. Plant Physiol. Biochem. 1: 2. 16-26.
14.Srinivasan, K. 2006. Fenugreek (Trigonella foenum-graecum): A review of health beneficial physiologica effects. Food Rev. Inter. 22: 203-224.
15.Wei, Z., Li, C., Gao, T., Zhang, Z., Liang, B., Lv, Z., Zou, Y. and Ma, F. 2019. Melatonin increases the performance of Malus hupehensis after UV-B exposure. Plant Physiol. biol.
16.Osman, E.A.M., El-Galad, M.A., Khatab, K.A. and El-Sherif, M.A.B. 2014. Effect of compost rates and foliar application of ascorbic acid on yield and nutritional status of sunflower plants irrigated with saline water. Global J. Sci. Res. 2: 6. 193-200.
17.Ahmad, P., Jaleel, C.A., Salem, M.A., Nabi, G. and Sharma S. 2010. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 30: 3. 161-175.
18.Sarikhani, H. 2014. Effect of UV-A Radiation on Growth and Some Physiological Properties of Peppermint (Mentha piperita). Plant Prod. Technol. 5: 2. 35-44.
19.Piri, E., Babaeian, M., Tavassoli, A. and Esmaeilian, Y. 2011. Effects of UV irradiation on plants. Afr. J. Microbiol. Res. 5: 1710-1716.
20.Maffei, M., Canova, D., Bertea, C.M. and Scannerini, S. 1999. UV-A effects on photomorphogenesis and essential- oil composition in Mentha piperita.J. Photochem. Photobiol. B: Biol.52: 105-110.
21.Krizek, D.T., Mirecki, R.M. and Britz, S.J. 1997. Inhibitory effects of ambient levels of solar UV-A and UV-B radiation of growth of cucumber. Physiol. Plant. 100: 886-893.
22.Gong, X., Shi, S., Dou, F., Song, Y.and Ma, F. 2017. Exogenous melatonin alleviates alkaline stress in Malus hupehensis rehd. by regulating the biosynthesis of polyamines. Mol.22: 9. 1542.
23.Shayganfar, A., Azizi, M. and Rasouli, M. 2018. Various strategies elicited and modulated by elevated UV-B radiation and protectant compounds in Thymus species: Differences in response over treatments, acclimation and interaction. Ind. Crops Prod. 113: 298-307.
24.Lichtenthaler, H.K. 1987. Chlorophylls and Carotenoids: Pigments of photosynthetic biomembranes. In methods in enzymology, Elsevier, pp. 350-382.
25.Verdaguer, D., Jansen, M.A., Llorens, L., Morales, L.O. and Neugart, S. 2017. UV-A radiation effects on higher plants: Exploring the known unknown. Plant Sci. 255: 72-81.
26.Deckmyn, G. and Impnes, I. 1988. Effects of solar UV-B irradiation on vegetative and generative growth of Bromus catharticus. Environ. Exp. Bot. 40: 179-185.
27.Turk, H., Erdal, S., Genisel, M., Atici, O., Demi, Y. and Yanmis, D. 2014.The regulatory effect of melatonin onphysiological, biochemical and molecular parameters in cold-stressed wheat seedlings. Plant Growth Regul. 74: 139-152.
28.Bernal, M., Verdaguer, D., Badosa, J., Abadía, A., Llusia, J., Penuelas, J., Nunez-Olivera, E. and Llorens, L. 2015. Effects of enhanced UV radiation and water availability on performance, biomass production and photoprotective mechanisms of Laurus nobilis seedlings. Environ. Exp. Bot. 109: 264-275.
29.Agrawal, S.B., Rathore, D. and Singh, A. 2004. Effect of supplemental ultraviolet-B and mineral nutrients on growth, biomass allocation and yieldof wheat (Triticum aestivum L.). Trop. Ecol. 45: 315-325.
30.Enteshari, Sh., Torkzadeh, M., Manouchehr Kalantari, Kh. and Ghorbani, M.L. 2005. The effect of different bands of ultravioelet radiation on picments content in Glycine max L. Iran. J. Biol. 18: 1. 77-84. (In Persian)
31.Hopkins, L., Bond, M.A. and Tobin, A.K. 2002. Ultraviolet-B radiation reduces the rates of cell division and elongation in the primary leaf of wheat (Triticum aestivum L. cv Maris Huntsman). Plant, Cell Environ.25: 617-624.
32.Mehrafarin, A., Naghdibad, H., Noormohammadi, G., Zand, E., Rezazadeh, S. and Qaderi, A. 2011. Effects of environmental factors and methanol on germination and emergence of Persian Fenugreek (Trigonella foenum-graecum L.). Afr. J. Agric. Res. 6: 19. 4631-4641.
33.Liang, B.W., Ma, C.Q., Zhang, Z.J., Wei, Z.W., Gao, T.T., Zhao, Q., Ma, F.W. and Li, C. 2018. Long-term exogenous application of melatonin improves nutrient uptake fluxes in apple plants under moderate drought stress. Environ. Exp. Bot. 155: 650-661.
34.Cao, S., Shao, J., Shi, L., Xu, L., Shen, Z., Chen, W. and Yang, Z. 2018. Melatonin increases chilling tolerance inpostharvest peach fruit by alleviating oxidative damage. Sci. Rep. 8: 1. 806.
35.Nawaz, M.A., Huang, Y., Bie, Z., Ahmed, W., Reiter, R.J., Niu, M. and Hameed, S. 2016. Melatonin: Current Status and Future Perspectives in Plant Science. Front. Plant Sci. 1230p.
36.Baradaran Firouzabadi, M., and Parsaeiyan, M. and Baradaran-Firouzabadi, M. 2017. Agronomic and physiological response of Nigella sativa L. to ascorbate and methanol foliar application in water deficit stress. Plant Ecophysiol. 8: 30. 13-27. (In Persian)
37.Arab, S., Baradaran Firouzabadi, M. and Asghari, H. 2016. The effect of ascorbic acid and sodium nitroprusside foliar application on photosynthetic pigments and some traits of spring safflowerunder water deficit stress. J. Plant Prod. 38: 4. 93-104. (In Persian)
38.Khiriya, K.D. and Singh, B.P. 2003. Effect of Phosphorus and Farmyard Manure on Yield, Yield Attributes and Nitrogen, Phosphorus and Potassium Uptake of Fenugreek (Trigonella foenum-graecum L.). Indian J. Agron. 48: 62-65.
39.Arnao, M.B. and Hernandez-Ruiz, J. 2007. Melatonin promotes adventitious and lateral root regeneration in etiolated hypocotyls of Lupinus albus L. J. Pineal Res. 42: 147-152.
40.Khalid Hussein, Z. and Qader Khursheed, M. 2014. Effect of foliar application of ascorbic acid on growth, yield components and some chemical constituents of wheat under water stress conditions. Jordan J. Agric. Sci. 10: 1-15.
41.Dolatabadian, A., Modares Sanavy, A.M. and Asilan, K. 2009. Effect of ascorbic acid foliar application on yield, yield component and several morphological traits of grain corn under water deficit stress conditions. Not. Sci. Biol. 2: 45-50.
42.Amin, A., Rashad, E.S.M. and Gharib, F. 2008. Changes in morphological, physiological and reproductive characters of wheat plants as affected by foliarapplication with salicylic acid and ascorbic acid. Aust. J. Basic Appl. Sci. 2: 252-261.
43.Hong, S.W. and Vierling, E. 2000. Mutants of Arabidopsis thaliana defective in theacquisition of tolerance to high temperature stress. Proc. Natl. Acad. Sci. 97: 8. 4392-4397. | ||
آمار تعداد مشاهده مقاله: 464 تعداد دریافت فایل اصل مقاله: 317 |