
تعداد نشریات | 13 |
تعداد شمارهها | 623 |
تعداد مقالات | 6,503 |
تعداد مشاهده مقاله | 8,659,288 |
تعداد دریافت فایل اصل مقاله | 8,260,637 |
مدلسازی رقومی جزء شن خاک با دادههای ابرطیفی | ||
مجله پژوهشهای حفاظت آب و خاک | ||
دوره 28، شماره 4، دی 1400، صفحه 145-165 اصل مقاله (1.5 M) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/jwsc.2022.19584.3505 | ||
نویسندگان | ||
مجید دانش* 1؛ حسینعلی بهرامی2 | ||
1نویسنده مسئول، استادیار حفاظت و فرسایش خاک، گروه علوم و مهندسی خاک، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران. | ||
2استاد فیزیک، حفاظت و فرسایش خاک، گروه علوم و مهندسی خاک، دانشگاه تربیت مدرس، ایران. | ||
چکیده | ||
سابقه و هدف: جزء شن از مهمترین اجزای بافت خاک بوده که برای عملیات مدلسازی زیستمحیطی و پهنهبندی رقومی خاک، باید مورد توجه واقع شود. از طرفی، بدلیل تغییرپذیری مکانی این جزء؛ تشخیص، پهنهبندی و پایش آن، در مقیاسهای وسیع، با استفاده از شیوههای سنتی رایج و عملیات تجزیه و تحلیل معمول آزمایشگاهی، بسیار وقتگیر و پر هزینه است. از نقطهنظر دیگر؛ دورسنجی هوایی و فضایی در قیاس با طیفسنجی میدانی و آزمایشگاهی دارای نواقصی همچون اثرات جوی، آثار ساختاری و ترکیبی طیفی، پایینتر بودن تفکیک طیفی و مکانی، اختلالات هندسی و نیز فرآیند اختلاط طیفی میباشد. لذا برای غلبه بر این نواقص و برای مطالعۀ عوامل دارای تغییرپذیری مکانی، نیازمند فنآوری مناسبی میباشد. با ظهور طیفسنجی بازتابی پراکنشی آزمایشگاهی که از لرزشهای بنیادین، فرعی و ترکیبی گروه-های عاملی(FGs) بهره میبرد، آن، بعنوان ابزاری نویدبخش در مطالعۀ اجزای خاک، معرفی شد. طی تحقیق حاضر، از طیفسنجی بازتابی مجاورتی، برای مدلسازی ابرطیفی اجزای شن در قسمتهایی از استان مازندران استفاده شد. مواد و روشها: جمعاً 128 نمونه از عمق 20 سانتیمتری سطح خاک، بر اساس روش نمونهبرداری SRS و با کمک اطلاعات جانبی همچون: زمینشناسی، کاربریاراضی، نقشۀ راهها، و خاکشناسی استان، جمعآوری شد. در ابتدا، مجموع نمونهها به دو قسمت برای عملیات واسنجی و اعتبارسنجی، تقسیم شد. با بهرهگیری از تحلیلابرطیفی، رگرسیونچندمتغیرۀ PLSR و بر اساس تکنیک LOOCV و عملیات پیشپردازش طیفی همچون: میانگینگیری، هموارسازی و مشتق اول طیفی بر اساس الگوریتم ساویتسکی-گولای، مدل تخمینی بر مبنای شاخصهای تحلیلی همچون همبستگی دوطرفۀ پیرسون (R)، ضریب تبیین (R2)، میانگین مربعات خطای اعتبارسنجی (RMSE)، و نیز شاخصهای اعتبارسنجی RPD و RPIQ، ایجاد و بررسی شد. یافتهها: تحقیق حاضر بر مبنای مدلسازی ابرطیفی شن منطقه در زیرمجموعۀ واسنجی مشتمل بر 96 و نیز زیرمجموعۀ اعتبارسنجی مشمتل بر 32 نمونه، نشان داد، 2 و 4 LV اول از مجموع 7 LV، بهترین تخمین در خاکهای منطقۀ مورد مطالعه را نشان میدهد. از آنجاییکه این تعداد عامل منتخب، قادرند بیش از 60% واریانس متغیر شن و نیز 98% واریانس دادههای طیفی را متمرکز کنند؛ نتیجتاً فرآیند واسنجی مدل تخمینی، بر اساس چهار فاکتور اول و شیوۀ LOOCV سراسری انجام شد. بهترین مدل ابرطیفی تخمینگر اجزای شن با این خصوصیات واسنجی شد، Rc: 76/0، R2c: 57/0، RMSEc: 77/9 و Sec: 82/9. همچنین مقادیر ضریب R بین متغیر شن و باندهای طیفی مؤثر بدین ترتیب محاسبه شد، 390: 46/0، 510-540: 53/0، 680-690: 55/0، 950-970: 67/0، 1100: 70/0، 1410: 76/0، 1860-1900: 76/0، 2180-2220: 77/0؛ که باندهای طیفی منتخب دارای بهترین و بیشترین تأثیر در فرآیند مدلسازی ابرطیفی شن در خاکهای استان بودهاند. بعلاوه، بارزترین دامنههای طیفی در فرآیند مدلسازی بدین تریتب بوده است: UV-390، Vis-440-540، NIR-740-990، SWIR-1430-1890، 1930، 2190-2240، 2330-2440 نانومتر که این نتایج در تطابق با برخی مطالعات انجام گرفته، بوده است. کیفیت مدل ابرطیفی واسنجیشدۀشن با استفاده از آزمونهایی همچون هتلینگ، لوریج تعدیلی و واریانس باقیماندهها نیز مورد بررسی قرار گرفت. مشخصات عملیات صحتسنجی بدین ترتیب بوده است: Rp: 83/0، R2p: 68/0، RMSEp: 68/8، SEp: 72/8 و انحراف: 26/1. نتیجهگیری: نتایج، حاکی از تحلیل مناسب ابرطیفی در برآورد مقادیر شن منطقه بوده است. بدین ترتیب بر مبنای LV2، RPDc: 51/1، RPIQc: 44/2؛ RPDp: 78/1، RPIQp: 45/2 و نیز بر اساس LV4، RPDc: 54/1، RPIQc: 48/2، RPDp: 75/1 و RPIQp: 41/2، محاسبه گردید. مقادیر RPIQ بالاتر از 2، بیانگر توانایی مناسب و کیفیتخوب مدل در برآورد مقادیر شن استان مازندران با استفاده از دادههایابرطیفی بوده است. نتایج تحقیق حاضر میتواند نقطۀ آغازی در پهنهبندی دقیقتر جزء شن بافت خاک، بر مبنای سکوهای دورسنجی باشد. همچنین، با مشخص شدن طولموجهای کلیدی در فرآیند مدلینگ؛ فرآیند آپاسکیلینگ(بیشمقیاسسازی) و نیز آماده-سازی سنجندههای ابرطیفی هوایی و فضایی، میتواند بهبود یافته که منجر به دقیقتر شدن مطالعات ابرطیفی اجزای بافت نیز خواهد شد. | ||
کلیدواژهها | ||
پهنهبندی رقومی؛ شن؛ طیفسنجی؛ مدلسازی ابرطیفی؛ PLSR | ||
مراجع | ||
1.Adeline, K.R.M., Gomez, C., Gorretta, N., and Roger, J.M. 2017. Predictive ability of soil properties to spectral degradation from laboratory Vis-NIR spectroscopy data. Geoderma. 288: 143-153.
2.Askari, M.S., Cui, J., O’Rourke, S.M., and Holden, N.M. 2015. Evaluation of soil structural quality using VIS–NIR spectra. Soil and Tillage Research.146: 108-117.
3.Bellon-Maurel, V., Fernandez-Ahumada, E., Palagos, B., Roger, J.M., and McBratney, A. 2010. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy, Trends Anal. Chem. 29: 9. 1073-1081.
4.Camargo, O.A., Moniz, A.C., Jorge, J.A., and Valadares, J.M. 2009. Methods of Chemical, Mineralogical and Physical Analysis of Soils Used in the Pedology Section (Technical Bulletin n.106), Instituto Agronômico (IAC), Campinas. 77p.
5.Casa, R., Castaldi, F., Pascucci, S., Palombo, A., and Pignatti, S. 2013. A comparison of sensor resolution and calibration strategies for soil texture estimation from hyperspectral remote sensing. Geoderma. 197: 17-26.
6.Chabrillat, S., Ben-Dor, E., Rossel, R.A.V., and Demattê, J.A.M. 2013. Quantitative soil spectroscopy. Appl. Environ. Soil Sci. 3: 1-3.
7.Chang, C.W., and Laird, D.A. 2002. Near-infrared reflectance spectroscopy analysis of soil C and N, Soil Science. 167: 110-116.
8.Conforti, M., Buttafuoco, G., Leone, A.P., Aucelli, P.P.C., Robustelli, G.,and Scarciglia, F. 2013. Studying the relationship between water-induced soil erosion and soil organic matterusing Vis–NIR spectroscopy and geomorphological analysis: A case study in southern Italy. Catena. 110: 44-58.
9.Curcio, D., Ciraolo, G., D’Asaro, F., and Minacapilli, M. 2013. Prediction of soil texture distributions using VNIR-SWIR reflectance spectroscopy. Procedia Environmental Sciences. 19: 494-503.
10.Danesh, M., Bahrami, H.A., Darvishzadeh, R., and Noroozi, A.A. 2016. Investigating clay contents using laboratory diffuse reflectance spectroscopy. Iranian Journal of RS & GIS. 8: 1. 71-94. (In Persian)
11.Demattê, J.A.M., and Terra, F.S. 2014. Spectral pedology: A new perspective on evaluation of soils along pedogenetic alterations, Geoderma. 217-218: 190-200.
12.Emadi, M., Taghizadeh-Mehrjardi, R., Cherati, A., Danesh, M., Mosavi, A., and Scholten, T. 2020. Predicting and Mapping of Soil Organic Carbon Using Machine Learning Algorithms in Northern Iran. Remote Sens. 12: 14. 22-34.
13.Ge, Y., Thomasson, J.A., and Morgan, C.L.S. 2014. Mid-infrared attenuated total reflectance spectroscopy for soil carbon and particle size determination. Geoderma. 213: 57-63.
14.Gomez, C., Lagacherie, P., and Coulouma, G. 2008. Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements. Geoderma. 148: 141-148.
15.Gomez, C., Le Bissonnais, Y., Annabi, M., Bahri, H., and Raclot, D. 2013. Laboratory Vis–NIR spectroscopy as an alternative method for estimatingthe soil aggregate stability indexesof Mediterranean soils. Geoderma. 209-210: 86-97. 16.Guo, L., Zhang, H., Shi, T., Chen, Y., Jiang, Q., and Linderman, M. 2019. Prediction of soil organic carbon stock by laboratory spectral data and airborne hyperspectral images. Geoderma.337: 32-41.
17.Hewson, R.D., Cudahy, T.J., Jones, M., and Thomas, M. 2012. Investigations into soil composition and texture using infrared spectroscopy. Appl. Environ. Soil Sci. 12p.
18.Kagan, T.P., Shachak, M., Zaady, E., and Karnieli, A. 2014. A spectral soil quality index (SSQI) for characterizing soil function in areas of changed land use. Geoderma. 230-231: 171-184.
19.Lagacherie, P., Baret, F., Feret, J.B., Netto, J.M., and Robbez-Masson, J.M. 2008. Estimation of soil clay and calcium carbonate using laboratory, field and airborne hyperspectral measurements. Remote Sensing of Environment. 112: 825-835. 20.Li, D., Durand, M., and Margulis, S.A. 2012. Potential for hydrologic characterization ofdeep mountain snowpack via passive microwave remote sensing in the KernRiver basin, Sierra Nevada, USA. Remote Sens. Environ. 125: 34-48.
21.Lu, P., Wang, L., Niu, Z., Li, L., and Zhang, W. 2013. Prediction of soil properties using laboratory VIS–NIR spectroscopy and Hyperion imagery, Journal of Geochemical Exploration. 132: 26-33.
22.McDowell, M.L., Bruland, G.L., Deenik, J.L., Grunwald, S., and Knox, N.M. 2012, Soil total carbon analysis in Hawaiian soils with visible, near-infrared and mid-infrared diffuse reflectance spectroscopy, Geoderma. 189-190: 312-320.
23.Mulder, V.L., de Bruin, S., Schaepman, M.E., and Mayr, T.R. 2011. The use of remote sensing in soil and terrain mapping - A review. Geoderma. 162: 1-19.
24.Ostovari, Y., Ghorbani-Dashtaki, S., Bahrami, H.A., Abbasi, M., Dematte, J.A.M., Arthur, E., and Panagos, P. 2018. Towards prediction of soil erodibility, SOM and CaCO 3 using laboratory Vis-NIR spectra: A case study in a semi-arid region of Iran. Geoderma. 314: 102-112.
25.Padarian, J., Minasny, B., and McBratney, A.B. 2019. Using deep learning to predict soil properties from regional spectral data. Geoderma Regional. 16: e00198.
26.Peng, L., Cheng, H., Wang, L.J., and Zhu, D. 2020. Comparisons the prediction results of soil properties based on fuzzy c-means clustering and expert knowledge from laboratoryVis-NIR spectroscopy data. Canadian J. of Soil Science. 101: 1. 33-44.
27.Qi, F., Zhang, R., Liu, X., Niu, Y., Zhang, H., Li, H., Li, J., Wang, B., and Zhang, G. 2018. Soil particle size distribution characteristics of different land-use types in the Funiu mountainous region. Soil and Tillage Research.184: 45-51.
28.Rawlins, B.G., Kemp, S.J., and Milodowski, A.E. 2011. Relationships between particle size distribution and VNIR reflectance spectra are weaker for soils formed from bedrock compared to transported parent materials. Geoderma. 166: 84-91.
29.Sawut, M., Ghulam, A., Tiyip, T., Zhang, Y.J., Ding, J.L., Zhang, F., and Maimaitiyiming, M. 2014. Estimating soil sand content using thermal infrared spectra in arid lands. International Journal of Applied Earth Observation and Geoinformation. 33: 203-210.
30.Stevens, A., Nocita, M., Toth, G., Montanarella, L., and van-Wesemael, B. 2013. Prediction of soil organic carbon at the European scale by visible and near infrared reflectance spectroscopy. PLoSONE. 8: 6. e66409. http://dx.doi.org/ 10.1371/ journal.pone.0066409.
31.Summers, D., Lewis, M., Ostendorf, B., and Chittleborough, D. 2011. Visible near-infrared reflectance spectroscopy as a predictive indicator of soil properties. Ecological Indicators. 11: 123-131.
32.Vašát, R., Kodešová, R., Borůvka, L., Klement, A., Jakšík, O., and Gholizadeh, A. 2014, Consideration of peak parameters derived from continuum-removed spectra to predict extractable nutrients in soils with visible and near-infrared diffuse reflectance spectroscopy (VNIR-DRS), Geoderma. 232-234: 208-218.
33.Viscarra Rossel, R.A., Walvoort, D.J.J., McBratney, A.B., Janik, L.J, and Skjemstad, J.O. 2006. Visible, near-infrared, mid-infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma. 131: 59-75.
34.Xian-Li, X., Xian-Zhang, P., and Bo, S. 2012. Visible and Near-Infrared Diffuse Reflectance Spectroscopy for Prediction of Soil Properties near a Copper Smelter. Pedosphere. 22: 3. 351-366.
35.Xu, D., Ma, W., Chen, S., Jiang, Q., He, K., and Shi, Z. 2018a. Assessment of important soil properties related to Chinese Soil Taxonomy based onvis–NIR reflectance spectroscopy. Computers and Electronics in Agriculture. 144: 1-8.
36.Xu, S., Zhao, Y., Wang, M., and Shi, X. 2018b. Comparison of multivariate methods for estimating selected soil properties from intact soil cores of paddy fields by Vis–NIR spectroscopy. Geoderma. 310: 29-43.
37.Zhao, L., Hong, H., Fang, Q., Algeo, T.J., Wang, C., Li, M., and Yin, K. 2020. Potential of VNIR spectroscopy for prediction of clay mineralogy and magnetic properties, and its paleoclimatic application to two contrasting Quaternary soil deposits. Catena. 184: 104239. | ||
آمار تعداد مشاهده مقاله: 301 تعداد دریافت فایل اصل مقاله: 218 |