
تعداد نشریات | 13 |
تعداد شمارهها | 622 |
تعداد مقالات | 6,501 |
تعداد مشاهده مقاله | 8,616,670 |
تعداد دریافت فایل اصل مقاله | 8,206,494 |
کاهش آسیب یخزدگی در گیاه پوششی کورونیلا (Coronilla varia) با محلولپاشی گلایسین بتائین | ||
پژوهشهای تولید گیاهی | ||
دوره 28، شماره 4، دی 1400، صفحه 195-212 اصل مقاله (899.13 K) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/jopp.2021.18569.2738 | ||
نویسندگان | ||
زهرا حاتمی1؛ زینب روئین* 2؛ محمد علی شیری3 | ||
1دانشجوی کارشناسیارشد علوم باغبانی- گیاهان زینتی، دانشکده کشاورزی، دانشگاه ایلام، ایلام، ایران | ||
2نویسنده مسئول، استادیار گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه ایلام، ایلام، ایران | ||
3استادیار پژوهشی، پژوهشکده مرکبات و میوههای نیمه گرمسیری، مؤسسه تحقیقات علوم باغبانی، سازمان تحقیقات، آموزش و ترویج کشاورزی، رامسر، ایران | ||
چکیده | ||
سابقه و هدف: کورونیلا (Coronilla varia) یا یونجه تاجی یکی از گیاهان خانواده Fabaceae است که به صورت خودرو در مناطق مختلف ایران پراکنش دارد. سرعت گسترش مناسب ریشه و شاخساره، همچنین کیفیت ظاهری این گیاه در شرایط تنش سبب شده که برای کنترل فرسایش خاک از آن استفاده شود. علاوه بر این، دارا بودن پتانسیل سرزنی و رشد مجدد، کورونیلا را به یک گزینه مناسب برای جایگزین شدن با چمن در فضاهای سبز تبدیل کرده است. این مطالعه با هدف ارزیابی پاسخ کورونیلا به تنش یخزدگی و تاثیر گلایسین بتائین در کاهش آسیب به گیاهچه آن، انجام شد. مواد و روشها: آزمایش به صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار انجام شد. دمای پایین به مدت یک ساعت در پنج سطح [25 (شاهد)، صفر، ۵-، ۱۰- و ۱۵- درجه سلسیوس] به عنوان فاکتور اول و محلولپاشی با گلایسین بتائین (یک روز قبل از تنش یخزدگی) در دو سطح (صفر و ۱۰۰ میلیمولار) به عنوان فاکتور دوم در نظر گرفته شد. بعد از تنش یخزدگی، میزان آسیب یخزدگی و شاخصهای فیزیولوژیک (محتوای نسبی آب، نشت یونی) و بیوشیمیایی (میزان کلروفیل، پرولین، پراکسیداسیون لیپیدها، پروتئین و آنزیم پراکسیداز) اندازهگیری شد. یافتهها: براساس نتایج، مواجه گیاهچه کورونیلا با دماهای پایین (10- و 15- درجه سلسیوس) موجب افزایش آسیب به شاخساره آن شد. عدم تفاوت معنیدار بین دمای صفر و 5- درجه سلسیوس نشاندهنده قابل تحمل بودن دمای 5- درجه سلسیوس برای گیاه است. محلولپاشی با گلایسین بتائین خسارت و آسیب به برگ را کاهش داد. نتایج نشان داد که تحت تنش یخزدگی محتوای نسبی آب برگ و ریشه کاهش مییابد. کمترین محتوای نسبی آب برگ با میزان 18/57 درصد و 02/59 درصد به ترتیب مربوط به تنش شدید در دماهای 10- و 15- درجه سلسیوس بود. مواجه گیاه با دماهای یخزدگی مقدار نشت یونی ریشه و برگ را افزایش داد، به طوری که تحت تنش شدید دمای پایین (15- درجه سلسیوس) نسبت به شاهد (دمای 25 درجه سلسیوس) میزان نشت یونی برگ افزایش 27 درصدی نشان داد. با کاهش دما، محتوای کلروفیل برگ ابتدا در دمای صفر درجه سلسیوس نسبت به دمای 25 درجه سلسیوس افزایش و در دماهایی زیر صفر درجه سلسیوس کاهش یافت. در حالی که کاربرد گلایسین بتائین (100 میلیمولار) باعث افزایش محتوای کلروفیل برگ تحت شرایط تنش یخزدگی شد. نتایج نشان داد که با کاهش دما، میزان پرولین در برگ و ریشه افزایش مییابد. محلولپاشی گلایسین بتائین باعث افزایش 7 درصدی پرولین برگ شد. از طرف دیگر، تنش یخزدگی منجر به کاهش میزان پروتئین برگ (16 درصد) و ریشه (26 درصد) کورونیلا در دمای 10- درجه سلسیوس شد. علاوه بر این با کاهش دما، میزان فعالیت آنزیم پراکسیداز برگ (66 درصد) و ریشه (156 درصد) و همچنین میزان مالون دیآلدهید برگ (193 درصد) و ریشه (141 درصد) افزایش یافت. نتیجهگیری: میتوان جمعبندی کرد که شاخصهای فیزیولوژیک و بیوشیمیایی کورونیلا تحت تأثیر تنش یخزدگی قرار گرفتند. براساس نتایج، میزان آسیبپذیری برگ کورونیلا بیشتر از ریشه بود. دمای پایین از طریق کاهش محتوای نسبی آب برگ و ریشه و افزایش نشت یونی سبب آسیب به شاخساره کورونیلا شد، در حالی که محلولپاشی با 100 میلیمولار گلایسین بتائین اثرات منفی تنش را کاهش داد. همچنین محلولپاشی گلایسین بتائین از طریق افزایش تجمع اسمولیتهای سازگار مانند پرولین در برگ و ریشه باعث کاهش اثرات نامطلوب تنش دمای پایین در کورونیلا گردید. | ||
کلیدواژهها | ||
پاسخ فیزیولوژیک؛ پرولین؛ تنش؛ کورونیلا؛ نشت یونی | ||
مراجع | ||
1.Abid, M., Ali, S., Qi, L. K., Zahoor, R., Tian, Z., Jiang, D., Snider, J.L. and Dai, T. 2018. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Sci. Rep. 8(1): 1-15.
2.Ali, S., Abbas, Z., Seleiman, M. F., Rizwan, M., YavaŞ, İ., Alhammad, B. A., Shami, A., Hasanuzzaman, M. and Kalderis, D. 2020. Glycine betaine accumulation, significance and interests for heavy metal tolerance in plants. Plants. 9(7): 896.
3.Al-Snafi, A.E. 2016. The pharmacological and toxicological effects of Coronilla varia and Coronilla scorpioides: A Review. Pharm. Chem. J. 3(2): 105-114.
4.Amini, F., Noori, M., Askari, M., Foroughi, M. and Abbaspour, J. 2012. Ni induction changes to some biochemical traits and protein electrophoresis pattern of Coronilla varia under hydroponic culture. J. Crop Prod. Proc. 2 (5): 143-152.(In Persian)
5.Arrora, R.M.E. and Wisniewski, R. 1992. Cold acclimation in genetically related (sibling) deciduous and evergreen peach (Prunus persica Batsch). Plant Physiol. 99: 1562-1568.
6.Ashraf, M. and Foolad, M.R. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 59: 206-216.
7.Bao, G., Ao, Q., Li, Q., Bao, Y.,Zheng, Y., Feng, X. and Ding, X.2017. Physiological characteristics of Medicago sativa L. In response to acid deposition and freeze-thaw stress. Water Air Soil Pollut. 228(9): 376.
8.Bates, L.S., Waldren, R.P. and Teare, I.D. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39(1): 205-207.
9.Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72(1-2): 248-254.
10.Chance, B. and Maehly, A.C. 1955. Assay of catalases and peroxidases. Meth. Enzymol. 2: 764-775.
11.Chen, T.H. and Murata, N. 2011. Glycine betaine protects plants against abiotic stress: mechanisms and biotechnological applications. PlantCell Environ. 34(1): 1-20.
12.Fathi, E., Tahmasebi, I. and Teimoori, N. 2016. Electrolyte leakage and catalase and peroxidase activity in chickpea genotypes seedling, in response to low temperatures. Agroecol. J. 12(2): 25-34. (In Persian)
13.Gan, L., Zhang, X., Liu, S. and Yin, S. 2018. Mitigating effect of glycine betaine pretreatment on drought stress responses of creeping bentgrass. Hort. Sci. 53(12): 1842-1848.
14.Giri, J. 2011. Glycinebetaine and abiotic stress tolerance in plants. Plant Signal. Behav. 6(11): 1746-1751.
15.Hajihashemi, S., Brestic, M., Landi, M. and Skalicky, M. 2020. Resistance of Fritillaria imperialis to freezing stress through gene expression, osmotic adjustment and antioxidants. Sci. Rep. 10(1): 1-13.
16.Hajihashemi, S., Noedoost, F., Geuns, J., Djalovic, I. and Siddique, K.H. 2018. Effect of cold stress on photosynthetic traits, carbohydrates, morphology, and anatomy in nine cultivars of Stevia rebaudiana. Front. Plant Sci. 9: 1430.
17.Hamani, A.K.M., Wang, G., Soothar, M.K., Shen, X., Gao, Y., Qiu, R. and Mehmood, F. 2020. Responses of leaf gas exchange attributes, photosynthetic pigments and antioxidant enzymesin NaCl-stressed cotton (Gossypium hirsutum L.) seedlings to exogenous glycine betaine and salicylic acid. BMC Plant Biol. 20(1): 1-14.
18.Heath, R.L. and Packer, L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125(1): 189-198.
19.Hosseini Valashkolaee, S., Tajvar, Y., Azadbakht, M. and Rafie-rad, Z. 2018. Evaluation of physiological and biochemical responses of some ornamental Citrus varieties under low temperature stress. J. Crop Improv. 19(4): 979-994. (In Persian)
20.Hu, L., Hu, T., Zhang, X., Pang, H. and Fu, J. 2012. Exogenous glycine betaine ameliorates the adverse effect of salt stress on perennial ryegrass. J. Am. Soc. Hort. Sci. 137(1): 38-46.
21.Karami, F., Gholami, M., Ershadi, A. and Sio-Se Mardeh, A. 2018. Evaluation of winter cold tolerance and critical temperature (LT50) estimation in 21 strawberry cultivars. Iran. J. Hort. Sci. 49(1): 79-91. (In Persian)
22.Koocheki, A. and Seyyedi, S.M. 2019. Mother corm origin and planting depth affect physiological responses in saffron (Crocus sativus L.) under controlled freezing conditions. Ind. Crops Prod. 138: 111468.
23.Kubiś, J., Floryszak-Wieczorek, J.and Arasimowicz-Jelonek, M. 2014. Polyamines induce adaptive responses in water deficit stressed cucumber roots. Plant Res. 127(1): 151-158.
24.Li, X., Ahammed, G.J., Li, Z.X., Zhang, L., Wei, J.P., Yan, P. and Han, W.Y. 2018. Freezing stress deteriorates tea quality of new flush by inducing photosynthetic inhibition and oxidative stress in mature leaves. Sci. Hort.230: 155-160.
25.Lichtenthaler, H.K. and Buschmann, C. 2001. Chlorophylls and carotenoids: Measurement and characterization by UV‐VIS spectroscopy. Curr. Prot. Food Anal. Chem. 1(1): F4-3.
26.Liu, B., Xia, Y.P., Krebs, S.L., Medeiros, J. and Arora, R. 2019. Seasonal responses to cold and light stresses by two elevational ecotypes of Rhododendron catawbiense: A comparative study of overwintering strategies. Environ. Exp. Bot. 163: 86-96.
27.Long, S., Yan, F., Yang, L., Sun, Z. and Wei, S. 2020. Responses of Manila Grass (Zoysia matrella) to chilling stress: From transcriptomics to physiology. PloS one. 15(7): e0235972.
28.Lutts, S., Kinet, J.M. and Bouharmont,J. 1996. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann. Bot. 78(3): 389-398.
29.Malekzadeh, P. 2015. Influence of exogenous application of glycine betaine on antioxidative system and growth of salt stressed soybean seedlings (Glycine max L.). Physiol. Mol. Biol. Plants.20: 133-137.
30.Mickelbart, M.V. and Boine, B. 2020. Glycine betaine enhances osmotic adjustment of ryegrass under cold temperatures. Agron. 10(2): 210.
31.Molano-Flores, B. 2014. An invasive plant species decreases native plant reproductive success. Nat. Areas J. 34(4), 465-470.
32.Nah, G., Lee, M., Kim, D.S., Rayburn, A.L., Voigt, T. and Lee, D.K. 2016. Transcriptome analysis of spartina pectinata in response to freezing stress. PloS one. 11:e0152294.
33.Nawaz, M. and Wang, Z. 2020. Abscisic acid and glycine betaine mediated tolerance mechanisms under drought stress and recovery in Axonopus compressus: A new insight. Sci. Rep. 10(1):1-10.
34.Nezami, A., Ahmadi Lahijani, M.J., Shojaei Nofarst, K., Javad Rezaei, J.and Fazeli, F. 2016. Freezing tolerance of grass species under controlled conditions. Int. J. Plant Prod. 23 (1): 89-106. (In Persian)
35.Oquist, G., Hurry, V.M. and Huner, N.P.A. 1993. Low-temperature effects on photosynthesis and correlation with freezing tolerance in spring and winter cultivars of wheat and rye. Plant Physiol. 101: 245-250.
36.Oraee, A., Tehranifar, A., Nezami, A. and Shoor, M. 2018. Effects of drought stress on cold hardiness of non-acclimated viola (Viola×wittrockiana ‘Iona Gold with Blotch’) in controlled conditions. Sci. Hort. 238: 98-106.
37.Oraee, A., Tehranifar, A., Nezami, A. and Shoor, M. 2020. The effects of three levels of irrigation water on the improvement of cold tolerance of acclimated viola. Acta Physiol. Plant. 42(7): 10-10.
38.Pan, Y., Zhang, S., Yuan, M., Song, H., Wang, T., Zhang, W. and Zhang, Z. 2019. Effect of glycine betaine on chilling injury in relation to energy metabolism in papaya fruit duringcold storage. Food Sci. Nutr.7(3): 1123-1130.
39.Pu, Y., Liu, L., Wu, J., Zhao, Y., Bai, J., Ma, L., Yue, J., Jin, J., Niu, Z., Fang, Y. and Sun, W. 2019. Transcriptome profile analysis of winter rapeseed (Brassica napus) in response to freezing stress, reveal potentially connected events to freezing stress. Int. J. Mol. Sci. 20(11): 2771.
40.Robinson, S. and Jones, G. 1986. Accumulation of glycine betainein chloroplasts provides osmotic adjustment during salt stress. Func. Plant Biol. 13(5): 659-668.
41.Rodríguez-Zapata, L.C., Gil, F.L.E., Cruz-Martínez, S., Talavera-May, C.R., Contreras-Marin, F., Fuentes, G. and Santamaría, J.M. 2015. Preharvest foliar applications of glycine-betaine protects banana fruits from chilling injury during the postharvest stage. Chem. Biol. Technol. Agric. 2(1): 1-10.
42.Roein, Z. and Chameh, T. 2017. Evaluation of cold and drought stress tolerance of Coronilla ground cover (Coronilla varia) in seedling stage. Research Project. Ilam University.(In Persian)
43.Saadati, S., Baninasab, B., Mobli, M. and Gholami, M. 2021. Foliar application of potassium to improve the freezing tolerance of olive leaves by increasing some osmolite compounds and antioxidant activity. Sci. Hort.276: 109765.
44.Sakai, A. and Larcher, W. 2012.Frost survival of plants: responses and adaptation to freezing stress (Vol. 62). Springer Sci. Bus. Media.
45.Sakamoto, A. and Murata, N. 2002.The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ. 25(2): 163-171.
46.Slabbert, M.M. and Krüger, G.H.J. 2014. Antioxidant enzyme activity, proline accumulation, leaf area and cell membrane stability in water stressed Amaranthus leaves. S. Afr. J. Bot.95: 123-128.
47.Volaire, F., Thomas, H. and Lelievre, F. 1998. Survival and recovery of perennial forage grasses under prolonged Mediterranean drought: I. Growth, death, water relations and solute content in herbage and stubble. New Phytol. 140(3): 439-449.
48.Wang, K., Bai, Z.Y., Liang, Q.Y.,Liu, Q.L., Zhang, L., Pan, Y.Z.,Liu, G.L., Jiang, B.B., Zhang, F. andJia, Y. 2018. Transcriptome analysisof chrysanthemum (Dendranthema grandiflorum) in response to low temperature stress. BMC Genomics. 19(1): 319.
49.Wei, S., Du, Z., Gao, F., Ke, X., Li, J., Liu, J. and Zhou, Y. 2015. Global transcriptome profiles of 'Meyer' Zoysia grass in response to cold stress. PLoS One. 10(6): e0131153.
50.Xiaochuang, C., Chu, Z., Lianfeng,Z., Junhua, Z., Hussain, S., Lianghuan, W. and Qianyu, J. 2017. Glycine increases cold tolerance in rice via the regulation of N uptake, physiological characteristics, and photosynthesis. Plant Physiol. Biochem. 112: 251-260.
51.Xin, Z. and Browse, J. 2000. Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ. 23(9): 893-902.
52.Zheng, W., Li, Y., Gong, Q., Zhang, H., Zhao, Z., Zheng, Z., Wang, Z., Zhao, Z. and Wang, Z. 2017. Improving yield and water use efficiency of apple trees through intercrop-mulch of crown vetch (Coronilla varia L.) combined with different fertilizer treatments in the Loess Plateau. Span. J. Agric. Res. 14(4): 1207. | ||
آمار تعداد مشاهده مقاله: 333 تعداد دریافت فایل اصل مقاله: 275 |