
تعداد نشریات | 13 |
تعداد شمارهها | 623 |
تعداد مقالات | 6,502 |
تعداد مشاهده مقاله | 8,645,939 |
تعداد دریافت فایل اصل مقاله | 8,245,838 |
ارزیابی پایلوت کاهش TPH درپالایش خاک آلوده گازوئیلی با اصلاحگر کربن فعال | ||
مجله پژوهشهای حفاظت آب و خاک | ||
دوره 28، شماره 1، فروردین 1400، صفحه 183-200 اصل مقاله (1.22 M) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/jwsc.2021.18661.3419 | ||
نویسندگان | ||
مینا هاشمی تزنگی1؛ سهیلا ابراهیمی* 2؛ رضا قربانی نصرآبادی2؛ سید علیرضا موحدی نائینی3 | ||
1دانشآموخته کارشناسیارشد گروه علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران | ||
2استادیار گروه علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران | ||
3دانشیار گروه علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران | ||
چکیده | ||
سابقه و هدف: در کشور نفتخیز ایران آلودگی خاک با ترکیبات نفتی از عوامل بسیارمهم آلودگی است. گازوئیل که یکی از محصولات عمده نفت خام است و خود منبع عمده آلودگی محیط زیست به شمار می رود. در حال حاضر نیازی مبرم در جهت جلـوگیری از گسترش، نشر و پخش آلودگیهای نفتی و مشتقات آنها وجود دارد. کربن فعال به عنوان یک ماده موثر برنامههای کاربردی محافظت از محیط زیست مورد توجه قرار گرفته است. هدف از انجام این پژوهش، ارزیابی پالایش هیدروکربن نفتیکل در خاک آلوده به گازوییل با اصلاحگرکربن فعال، تعیین مدل سنتیک آن در طی فرآیند اعمال اصلاحگر و بررسی کمی تاثیر مقادیر و اندازه دانه بندی کربن فعال اضافه شده بر نرخ کاهش آلودگی هیدروکربنی بوده است. مواد و روشها: خاک آلوده به گازوییل از اطراف مخزن گازوئیل در اطراف پالایشگاه شیراز جمعوری و پس از سنجش مقدار هیدروکربن نفتیکل اولیه و ویژگیهای فیزیکی و شیمایی خاک آلوده، نمونههای خاک 700 گرمی حاوی کربن فعال آماده شده در اندازه-های 05/0 و 05/2 میلیمتر و مقادیر وزنی صفر، 20، 40، 60، 80 و 100 گرم بر کیلوگرم بصورت پایلوت آماده شد. سپس نمونهها در شرایط رطوبت ثابت 50 درصد بمدت چهار هفته در دمای2 ± 28 درجه سانتیگراد و هر هفته دو دور هوادهی، استراحتدهی و انکوبه شد. در نهایت نتایج تغییرات هیدروکربن نفتی کل و فعالیت میکروبی در زمان پس از تجزیه و تحلیل آماری گزارش شد. یافتهها: نتایج نشان داد که کاربرد کربن فعال اثر معنیداری بر کاهش آلودگی گازوییلی خاک داشت. نتایج تعیین مدل سنتیک کاهش آلودگی در طی فرآیند اعمال کربن فعال نشان داد که سینتیک کاهش هیدروکربننفتیکل از نوع معادله درجه اول بود. نتایج نشان داد با افزایش وزن اصلاحگر، شدت کاهش نیمه عمر و سرعت ثابت تجزیه افزایش یافت. بهطوری که در تیمار وزن 100 گرم کربن فعال، کمترین نیمه عمربرابر با 13/21 روز و خاک شاهد بیشترین نیمه عمر معادل با 76/78 را به خود اختصاص دادند. نتایج هیدروکربن نفتیکل، کاهش معنیدار هیدروکربنهای نفتی را در کلیه تیمارهای کربنفعال نشان داد. بررسی تنفس زیستی (شاخص فعالیت میکروارگانیسمهای تجزیهگر) نشان داد کاربرد کربن فعال، در اندازههای کوچکتر و مقدار وزنی بالاتر سبب بهبود تجزیه هیدروکربنی گردید. میزان بهرهوری زیستی کربن فعال در پایان 60 روز معادل با 38 درصد محاسبه شد. نتیجهگیری: کاربرد اصلاحگر کربن فعال درخاک آلوده گازوئیلی یک روش ارزان، کارآمد و سازگار با محیط زیست میباشد که در صورت استفاده مناسب در خاک آلوده، محیطی مناسب برای گیاهان و میکرارگانیسمهای خاک فراهم میکند. این روش میتواند در پالایش خاکهای آلوده بهعنوان پیش تصفیه موثر همراه با سایر روشهای زیستی و یا به تنهایی (بسته به میزان آلودگی و تصفیه مورد نیاز) به کار گرفته شود. | ||
کلیدواژهها | ||
تجزیه بیولوژیکی؛ سینتیک؛ کربن فعال؛ نیمه عمر؛ نفت خام | ||
مراجع | ||
1.Agarry, S.E., Aremu, M.O., and Aworanti, O.A. 2013a. Biodegradation of 2, 6-dichlorophenol wastewater in soil column reactor in the presence of pineapple peels-derived activated carbon, palm kernel oil and inorganic fertilizer. J. Environ. Prot. 4: 6. 537.
2.Agarry, S.E., Aremu, M.O., and Aworanti, O.A. 2013b. Kinetic modelling and half-life study on enhanced soil bioremediation of bonny light crude oil amended with crop and animal-derived organic wastes. J. Pet Environ Biotechnol. 4: 2. 137.
3.Anderson, J.P.E., Page, A.L., Miller, R.H., and Keeney, D.R. 1982. Soil Respiration. P 831-871. In: A.L. Page (Ed.). Methods of Soil Analysis, Part 2, 2nd Edition, ASA and SSSA, Madison.
4.Ania, C.O., Cabal, B., Parra, J.B., and Pis, J.J. 2007. Importance of the hydrophobic character of activated carbons onthe removal of naphthalene from the aqueous phase. Adsorp. Sci. Technol.25: 3-4. 155-167.
5.Baghvand, A., Daryabeigi Zand, A., Nabibidhendi, G., and Mehrdadi, N. 2011. Use of column leaching test to study the leachability of polycyclic aromatic hydrocarbons from contaminated soil. Environ. Sci. 8: 67-82. (In Persian)
6.Bandosz, T.J. 2006. Activated Carbon Surfaces in Environmental Remediation (Interface Science and Technology), Academic Press, London, UK, 588p.
7.Boopathy, R., Karthikeyan, S., Mandal, A.B., and Sekaran, G. 2013. Adsorption of ammonium ion by coconut shell-activated carbon from aqueous solution: kinetic, isotherm, and thermodynamic studies. Environ. Sci. Pollut. Res.20: 1. 533-542.
8.Cheremisinoff, P.N., and Ellerbusch, F. 1978. Carbon adsorption handbook. Ann Arbor Science Publishers. W. Hassler, In: P.N. Cheremisinoff, E.F (eds.), Carbon Adsorption Handbook, Ann. Arbor Science, Ann. Arbor, MI, 1980. 156p.
9.Chien, Y.C. 2012. Field study of in situ remediation of petroleum hydrocarbon contaminated soil on site using microwave energy. J Hazard. Mater.15: 457-461.
10.Doustaky, M., Ebrahimi, S., Movahedi Naeeini, S.A., and Olamaei, M. 2013. Optimization of petroleum hydrocarbon biodegradation by indigenous andnon-indigenous microorganisms. Journal of Water and Soil Conservation.20: 4. 165-181.
11.Ebrahimi, S. 2009. Spatial-temporal variability of hydrocarbon pollutantsand chemical solvents behavior insoil porous media (Doctoral dissertation, PhD Thesis. Tarbiat Modares University, 150p. (In Persian)
12.Ebrahimi, S., Shayegan, J., Malakouti, M., and Akbari, A. 2011. Environmental evaluation and assessment of some important factors of oil contamination in soil around sarkhoun gas refinery of Bandar Abbas. Journal of Environmental studies. 37: 57. 9-26.
13.Ebrahimi, S., Shayegan, J., Malakouti, M.J., Akbari, A., and Atashjameh, A. 2010. Hydrocarbon pollution emission in soil around sarkoun refinery. J. Water Soil Cons. 4: 101-124.
14.Fallah, M., Shabanpor, M., Zakerinia, M., and Ebrahimi, S. 2015. Risk assessment of gas oil and kerosene contaminationon some properties of silty claysoil. Environmental monitoring and assessment. 187: 7. 1-13.
15.Farzadkia, M., Dehghani, M., and Moafian, M. 2014. The effects of Fenton process on the removal of petroleum hydrocarbons from oily sludge in Shiraz oil refinery, Iran. Journal of Environmental Health Science and Engineering. 12: 1. 1-7.
16.Gallego, J.L., Loredo, J., Llamas, J.F., Vázquez, F., and Sánchez, J. 2001. Bioremediation of diesel-contaminated soils: evaluation of potential insitu techniques by study ofbacterial degradation. Biodegradation, 12: 5. 325-335.
17.Ghosh, U., Luthy, R.G., Cornelissen, G., Werner, D., and Menzie, C.A. 2011.In-situ sorbent amendments: a new direction in contaminated sediment management. Environ. Sci. Technol.45: 4. 1163.
18.Gong, X., Li, J., Lu, H., Wan, R., Li, J., Hu, J., and Fang, H. 2007. Acharge-driven molecular water pump. Nat. Nanotechnol. 2: 11. 709.
19.Hutchinson, S.L., Banks, M.K., and Schwab, A.P. 2001. Phytoremediation of aged petroleum sludge. J Environ. Qual. 30: 2. 395-403.
20.Kavandi Habib, R., Heshmati, G., and Ebrahimi, S. 2018. Evaluation of Petroleum-Degrading Bacteria in phytoremediation of soil contaminated with petroleum (Case study: Soils surrounding Tehran Oil Refinery). PEC. 5: 11. 131-144.
21.Li, Z., Wang, L., Li, Y., Feng, Y., and Feng, W. 2019. Carbon-based functional nanomaterials: Preparation, properties and applications. Composites Science and Technology. 179: 10-40.
22.Marquez-Rocha, F.J., Hernandez-Rodriguez, V., and Lamela, M.T. 2000. Biodegradation of diesel oil in soil by microbial consortium. Water, Ai Soil Pollut. 128: 3. 313-320.
23.Meynet, P., Hale, S.E., Davenport, R.J., Cornelissen, G., Breedveld, G.D., and Werner, D. 2012. Effect of activated carbon amendment on bacterial community structure and functions in a PAH impacted urban soil. Environ. Sci. Technol. 46: 9. 5057-5066.
24.Movahedi, N., Taherishargh, M., Belova, I.V., Murch, G.E., andFiedler, T. 2019. Mechanical and Microstructural Characterization of an AZ91–Activated Carbon Syntactic Foam. Materials. 12: 1. 3.
25.Nelson, D.W., and Sommers, L.E. 1996. Total carbon, organic carbon and organic matter. P 961-1010, In: D.L. Sparks et al. (eds.), Methods of Soil Analysis. Part 3. Chemical methods. SSSA and ASA, Madison, WI, USA.
26.Olsen, S.R., and Sommer, L.E. 1982. Phosphorus. P 403-430. In: A.L. Page, R.H. Miller, and D.R. Keeney, D.R. (eds.), Methods of Soil Analysis. Agronomy vol. 9 (Part II). Am. Soc. Agron., S.S.S. Am. Madison. WI.
27.Owabor, C.N., and Aluyor, E.O. 2008. Application of adsorbent as a novel technique during biodegradation of a polycyclic aromatic hydrocarbon (anthracene). Afr. J. Biotechnol.7: 18. 3321-3325.
28.Pavoni, B., Drusian, D., Giacometti, A., and Zanette, M. 2006. Assessment of organic chlorinated compound removal from aqueous matrices by adsorptionon activated carbon. Water Res. 40: 19. 3571-3579. 29.Rhoades, J.D. 1996. Salinity Electrical conductivity and total dissolved solids. In: D.L. Sparks (Ed.), Methods of Soil Analysis. Part 3, chemical methods. SSSA, Madison, WI, 5, pp. 417-437.
30.Rhodes, A.H., McAllister, L.E., Chen, R., and Semple, K.T. 2010. Impactof activated charcoal on the mineralisation of 14C-phenanthrene in soils. Chemosphere. 79: 4. 463-469.
31.Saleh, T.A., Adio, S.O., Asif, M., and Dafalla, H. 2018. Statistical analysis of phenols adsorption on diethylenetriamine- modified activated carbon. Journal of Cleaner Production. 182: 960-968.
32.Semenyuk, N.N., Yatsenko, V.S., Strijakova, E.R., Filonov, A.E., Petrikov, K.V., Zavgorodnyaya, Y.A., and Vasilyeva, G.K. 2014. Effectof activated charcoal on bioremediation of diesel fuel-contaminated soil. Microbiology. 83: 5. 589-598.
33.Sumathi, S., Bhatia, S., Lee, K.T.,and Mohamed, A.R. 2010. Cerium impregnated palm shell activated carbon (Ce/PSAC) sorbent for simultaneous removal of SO2 and NO-Process study. Chem. Eng. J. 162: 51-57.
34.Tang, J., Lu, X., Sun, Q., and Zhu, W. 2012. Aging effect of petroleum hydrocarbons in soil under different attenuation conditions. Agric. Ecosyst. Environ. 149: 109-117.
35.Tazangi, M.H., Ebrahimi, S., Nasrabadi, R.G., and Naeeni, S.A.M. 2020. Kinetic Monitoring of Bioremediators for Biodegradation of Gasoil-PollutedSoil. Water, Air and Soil Pollution,231: 8. 1-13.
36.The Petroenergy Information Network of Islamic Republic of Iran’s Ministry of Petroleum (SHANA), http://www.shana.ir/ 171651-fa.html.
37.Thomas, G.W. 1996. Soil pH and soil acidity. Methods of soil analysis: part 3 chemical methods, 5: 475-490.
38.Valderrama, C., Cortina, J.L., Farran, A., Gamisans, X., and Lao, C. 2007. Kinetics of sorption of polyaromatic hydrocarbons onto granular activated carbon and Macronet hyper-cross-linked polymers (MN200). J. Colloid Interface Sci. 310: 1. 35-46.
39.Vann, A.R. 2006. Book Review:Soil Pollution: Origin, Monitoringand Remediation. International Journal of Environment and Pollution.27: 1-3. 265-266.
40.Vasilyeva, G.K., Strijakova, E.R., and Shea, P.J. 2006. Use of activated carbon for soil bioremediation. P 309-322.In: I. Twardowska, H.E. Allen, M.M. Häggblom, and S. Stefaniak (eds.)Soil and water pollution monitoring, protection and remediation. Springer, Dordrecht.
41.Yang, R.T. 2003. Adsorbents: Fundamentals and Applications, AJohn Wiley & Sons. Inc. Publications, New Yersey, Pp: 8-79.
42.Yeung, P.Y., Johnson, R.L., and Xu, J.G. 1997. Biodegradation of petroleum hydrocarbons in soil as affected by heating and forced aeration. J. Environ. Qual. 26: 6. 1511-1516.
43.Zahed, M.A., Abdul Aziz, H., Isa, M.H., Mohajeri, L., Mohajeri, S., and Kutty, S.R.M. 2011. Kinetic modeling and half-life study on bioremediation of crude oil dispersed by Corexit 9500.J. Hazard. Mater. 185: 1027-1031. | ||
آمار تعداد مشاهده مقاله: 507 تعداد دریافت فایل اصل مقاله: 361 |