
تعداد نشریات | 13 |
تعداد شمارهها | 626 |
تعداد مقالات | 6,517 |
تعداد مشاهده مقاله | 8,746,477 |
تعداد دریافت فایل اصل مقاله | 8,317,297 |
برهمکنش آهن و سیلیسیم بر برخی از صفات بیوشیمیایی نخودفرنگی (Pisum sativum cv. Wando) در شرایط گلخانهایی | ||
پژوهشهای تولید گیاهی | ||
مقاله 7، دوره 27، شماره 2، شهریور 1399، صفحه 103-119 اصل مقاله (1.05 M) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/jopp.2020.16265.2475 | ||
نویسندگان | ||
ام لیلا عباسپور شاهمرس1؛ فرزاد رسولی* 2؛ فرهاد بهتاش2؛ احمد آقایی3 | ||
1دانشآموخته کارشناسیارشد فیزیولوژی و اصلاح سبزی گروه علوم و مهندسی باغبانی، دانشکده کشاورزی، دانشگاه مراغه، مراغه، ایران | ||
2استادیار فیزیولوژی و اصلاح سبزی گروه علوم و مهندسی باغبانی، دانشکده کشاورزی، دانشگاه مراغه، مراغه، ایران | ||
3استادیار زیستشناسی گروه زیستشناسی سلولی و مولکولی، دانشکده کشاورزی، دانشگاه مراغه، مراغه، ایران | ||
چکیده | ||
ه برهمکنش آهن و سیلیسیم بر برخی از صفات بیوشیمیایی نخودفرنگی (Pisum sativum cv. Wando) در شرایط گلخانهایی چکیده سابقه و هدف: نخودفرنگی گیاهی علفی، یکساله و دارای طول عمر کوتاه و با نام علمی L.) Pisum sativm) که بهترین نتیجه را در آب و هوای خنک میدهد. هر چند وجود برخی فلزات سنگین همچون آهن، در محلول غذایی یا خاک برای رشد طبیعی گیاهان ضروری می-باشد غلظتهای زیاد این عناصر از طریق افزایش رادیکالهای آزاد سمی و القا تنش اکسیداتیو میتواند عاملی برای بازدارندگی رشد و ایجاد علایم سمیّت گردد. از طرف دیگر سیلیسیم میتواند باعث افزایش تولید و کیفیت محصولات در شرایط تنش ناشی از سمیّت فلزات سنگین از قبیل آهن، منگنز و آلومینیوم در گیاهان شده و بر تحریک تولید برخی آنزیمهای آنتیاکسیدانی و فتوسنتز تاثیر مثبت می گذارد. در این پژوهش اثرات سیلیسیم در حضور مقادیر مختلف آهن بر فعالیت برخی خصوضیات بیوشیمیایی در نخودفرنگی مورد بررسی قرار گرفت. مواد و روشها: آزمایش به صورت فاکتوریل و در قالب طرح بلوکهای کاملاً تصادفی با کاربرد سیلیسیم در سه سطح (0، 14 و 28 میلیگرم بر لیتر) از منبع متاسیلیکات سدیم (Na2SiO3.5H2O) و آهن در سه سطح (05/0، 1/0 و 3/0 گرم بر لیتر) از منبع کلات آهن با سه تکرار در شرایط گلخانهایی اجرا گردید. محلول غذایی مورد استفاده، محلول هوگلند تغییر یافته بود که، مقادیر یاد شده سیلیسیم و آهن به آن اضافه شده و سپس مصرف گردید. صفات بیوشیمیایی همچون کلروفیل کل، پروتئین محلول کل، میزان مالوندیآلدهید (MDA)، غلظت پراکسیدهیدروژن و فعالیت ویژه آنزیمهای کاتالاز (CAT)، گایاکول پراکسیداز (GPX) و آسکوربات پراکسیداز (APX) مورد ارزیابی قرار گرفتند. یافتهها: نتایج نشان داد که اثرات برهمکنش بین آهن و سیلیسیم بر کلروفیل کل، پروتئین، پراکسید هیدروژن، CAT و APX معنیدار شده است. با افزایش غلظت آهن میزان کلروفیل و پروتئین کاهش پیدا کرده اما سیلیسیم باعث افزایش آنها شده است و به عبارت دیگر با کاربرد سلیسیم اثرات تنش ایجاد شده توسط غلظت بالای آهن تقلیل پیدا کرد. در برهمکنش آهن و سیلیسیم بر میزان پراکسید هیدروژن، آهن باعث افزایش و سیلیسیم باعث کاهش آن در تمامی سطوح تیمارها شده است. هر دو تیمار آهن و سیلیسیم باعث افزایش فعالیت آنزیمهای CAT و APX شده است. از طرف دیگر اثرات متقابل تیمارها بر روی صفات فعالیت ویژه GPX و مالوندیآلدهید معنی دار نبود بلکه اثرات ساده آهن و سیلیسیم باعث تغییرات معنیدار در آنها شدند به طوری که آهن در هر دو باعث افزایش شده ولی سیلیسیم باعث کاهش مالوندیآلدهید و افزایش GPX شده است. نتیجهگیری: بر اساس نتایج مشاهده شده می توان گفت که غلظت های بالای آهن در گیاه نخود فرنگی، همچون اکثر گیاهان باعث افزایش تنش اکسیداتیو شده و سیلیسییم تا حدودی اثرات مخرب این نوع تنش را کاهش داده است. پس می توان از سیلسیم به عنوان یک عنصر مفید در کاهش تنشهای زیستی و غیرزیستی مورد مطالعه و استفاده قرار بگیرد. بر اساس این پژوهش میتوان گفت آهن با غلظت 1/0 گرم بر لیتر و سلیسیم با غلظت 28 میلیگرم بر لیتر بهترین اثر را در بهبود برخی ویژگیهای بیوشیمیایی نخودفرنگی داشته است. | ||
کلیدواژهها | ||
تنش اکسیداتیو؛ تنش زیستی؛ رادیکالهای آزاد؛ سمیت عناصر | ||
مراجع | ||
1.Aebi, S.H. 1984. catalas in Vitro. Methods Enzymol. 105: 121-126.
2.Agarie, S., Hanaoka, N., Ueno, O., Miyazaki, A., Kubota, F., Agata, W. and Kaufman, P.B. 1998. Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. Plant Prod. Sci. 1: 96-103. 3.Al-Aghabary, K., Zhu, Z. and Shi, Q. 2004. Influence of Silicon supply on chlorophyll content, chlorophyll fluorescence and antioxidative enzyme activities in tomato plants under salt stress. J. Plant Nutr. 27: 2101-2115.
4.Arnon, D.I. 1949. Copper enzymes in isolated chloroplast, polyphenol-oxidase in Beta vulgaris. Plant Physiol. 24: 1-15.
5.Becker, M. and Asch, F. 2005. Iron toxicity in rice-condition and managemen concepts. J. Soil Sci. Plant Nutr.168: 558-573.
6.Bhattacharjee, S. 2005. Reactive oxygen species and oxidative stress, senescence and signal transduction in plants. Curr. Sci. 89: 1113-1121.
7.Blakrishman, K. 2000. Peroxidase Activity as an Indacator of the Iron Deficiency Banana. Indian J. Plant Physiol. 5: 389-391.
8.Blokhina, O., Virolainen, E. and Fagerstedt, K.V. 2003. Antioxidants, Oxidative Damage and Oxygen Deprivation Stress: A Review. Ann. Bot. 91: 179-194.
9.Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
10.Chance, B. and Maehly, A.C. 1955 Assay of catalase and peroxidase. Methods Enzymol. 2: 764-775.
11.Choudhary, M., Jetley, U.K., Khan, M.A., Zutshi, S. and Fatma, T. 2007. Effect of heavy metal stress on proline malondialdehyde, and superoxide dismutase activity in the cyanobac terium Spirulina platensis-S5. Ecotoxicol. Environ. Saf. 66: 2. 204-209.
12.Gong, H., Zhu, X., Chen, K., Wang, S. and Zhang, C. 2005. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci. 169: 2. 313-321.
13.Gunes, A., Inal, A., Bagci, E.G., Coban, S. and Pilbeam, D.J. 2007. Silicon mediates changes to some physiological and enzymatic parameters symptomatic for oxidative stress in spinach (Spinacia oleracea L.) grown under B toxicity. Sci. Hort. 113: 113-119.
14.Heath, R.L. and Packer, L. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125: 189-198.
15.Jan, S., Alyemeni, M.N., Wijaya, L., Alam, P., Siddique, K.H. and Ahmad,P. 2018. Interactive effect of24-epibrassinolide and silicon alleviates cadmium stress via the modulation of antioxidant defense and glyoxalase systems andmacronutrient content in Pisum sativum L. seedlings. BMC Plant Biol. 18: 1. 146.
16.Kampfenkel, K. and Montagu, V. 1995. Effects of iron excess on Nicotiana plumbaginifolia plants (implications to oxidative stress). Plant Physiol.107: 725-735. 17.Khodarahmi, S., Khoshgoftarmanesh, A. and Mobli, M. 2012. Effect of silicon nutrition on alleviating cadmium toxicity-induced damage on cucumber (Cucumis sativus L.) at vegetative stage. ejgcst. 3: 3. 103-110. (In Persian)
18.Kiani Chalmardi, Z. and Abdolzadeh, A. 2013. Role of silicon in alleviation of iron deficiency and toxicity in hydroponically-grown rice (Oryza sativa L.) plants. ejgcst. 3: 4. 79-89. (In Persian)
19.Liang, Y.C. 1999. Effects of silicon on enzyme activity and sodium potassium and calcium concentration in barley under salt stress. Plant Soil. 29: 217-224.
20.Liang, Y.C., Wong, J.W.C. and Long, W. 2005. Silicon-mediated enhacement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere.58: 475-483. 21.Liang, Y., Sun, W., Zhu, Y.G. and Christie, P. 2007. Mechanisms of silicon mediated alleviation of a biotic stresses in higher plants: A review. Environ. Pollut. 147: 422-428.
22.Majerus, V., Bertin, P. and Lutts, S. 2007. Effects of iron toxicity on osmotic potential, osmolytes and polyamines concentrations in the African rice (Oryza glaberrima Steud). Plant Sci. 173: 96-105.
23.Mehraban, P. and abdolazadeh, A. 2012. Effects of iron excess on the antioxidant activity and patterns of protein electrophoresis in Oryza sativa var. Shafagh. J. Plant Prod. 19: 1. 85-106.
24.Mittle, R. 2002. Oxidative stress, antioxidant and stress tolerance. Ann. Rev. Plant Biol. 7: 405-415.
25.Moussa, H.R. 2006. Influence of exogenous application of silicon on physiological response of salt-stressed maize (Zea mays L.). Int. J. Agric. Biol. 8: 3. 293-297.
26.Nakano, Y. and Asada, K. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase inSpinach chloroplasts. Plant Cell Physiol. 22: 867-880.
27.Nenova, V. 2006. Effect of iron supply ongrowth and photosystem II efficiency of pea plants. Gen. Appl. Plant Physiol. (Special issue), 32: 81-90.
28.Neocleous, D. and Vasilakakis, M. 2007. Effects of NaCl stress on red raspberry (Rubus idaeus L. ‘Autumn Bliss’). Sci. Hort. 112: 3. 282-289.
29.Peña-Olmos, J.E. and Casierra-Posada, F. 2013. The photochemical efficiency of photosystem II (PSII) in broccoli plants (Brassica oleracea var. Italica) affected by excess of iron. Orinoquia. 17: 1. 15-22.
30.Pooladvand, S., Ghorbanli, M. and. Farzami, S. 2012. Effect of various levels of iron on morphological, biochemical and physiological properties of Glycine max var. Pershing. IJPP.2: 4. 531-538.
31.Shah, K., Kumar, R.G., Verma, R.S. and Dubey, R.S. 2001. Effect of cadmium on lipid peroxidation superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci. 161: 1135-1144.
32.Sharma, P., Jha, A.B., Dubey, R.S.and Pessarakli, M. 2012. Reactive oxygen species, oxidative damage and antioxidative defense mechanism in plants under stressful conditions. J. Bot. Pp: 1-26.
33.Shi, Q.H. and Wang, X.F. 2009. Effects of exogenous silicon on photosynthetic capacity and antioxidant enzyme activities in choloroplast of cucumber seedling under excess manganese. Agr. Sci. China. 8: 1. 40-50.
34.Tale Ahmad, S. and Haddad, R. 2010. Effect of Silicon on Antioxidant Enzymes Activities and Osmotic Adjustment Contents in Two Bread Wheat Genotypes under Drought Stress Conditions. Czech J. Genet. Plant Breed. 26: 2. 207-225. (In Persian) 35.Thirupathi, K., Jun-Cheol, M., Changsoo, K., Kumariah, M. and Wook, K. 2011. Reactive oxygen species in plant their generation. Signal transduction and scavenging mechanisms. Aust. J. Crop Sci. 5: 6. 709-725.
36.Velikova, V., Yordanov, I. and Edreva, A. 2000. Oxidative stress and som antioxidant system in acid rain treated bean plant. Protective role of exogenous Polyamines. Plant Sci. 151: 59-66.
37.Yeritsyan, N. and Economakis, C. 2002. Effect of nutrient solution’s iron concentration on growth and essential oil content of oregano plants growth in solution culture. Acta Hort. 576: 277-283.
38.Zhu, Z.G., Wei, G.Q., Li, J., Qian, Q.Q. and Yu, J.Q. 2004. Silicon alleviates salt stress and increases antioxidants enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci. 167: 527-533. | ||
آمار تعداد مشاهده مقاله: 428 تعداد دریافت فایل اصل مقاله: 296 |