
تعداد نشریات | 13 |
تعداد شمارهها | 622 |
تعداد مقالات | 6,489 |
تعداد مشاهده مقاله | 8,606,847 |
تعداد دریافت فایل اصل مقاله | 8,199,404 |
پیامد زغال زیستی اصلاح شده ذرت بر برخی ویژگیهای زیستی یک خاک آهکی آلوده به کادمیوم | ||
مجله مدیریت خاک و تولید پایدار | ||
مقاله 7، دوره 9، شماره 4، اسفند 1398، صفحه 127-144 اصل مقاله (527.55 K) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/ejsms.2020.16591.1888 | ||
نویسندگان | ||
ندا مرادی* 1؛ اکبر کریمی2 | ||
1استادیار گروه علوم و مهندسی خاک، دانشگاه شهید چمران اهواز، | ||
2دانشجوی دکتری گروه علوم و مهندسی خاک، دانشگاه شهید چمران اهواز | ||
چکیده | ||
پیشینه و هدف: انباشتگی فلزهای سنگین در سالهای گذشته بسته به کارکرد مردم روبه افزایش است. ریزجانداران خپیشینه و هدف: انباشتگی فلزهای سنگین در سالهای گذشته بسته به کارکرد مردم روبه افزایش است. ریزجانداران خاک از بخشهای مهم خاک بوده که کارکرد آنها وابسته به زهری بودن فلزهای سنگین مانند کادمیوم است. فراسنجههای میکروبـی مـیتواننـد برای ارزیـابی کیفیـت خاکهای آلوده بکار روند. زغال زیستی همانند یک بهساز خاک میتواند با نشان بر زیستفراهمی فلزهای سنگین در خاکهای آلوده، آسیب رسیدن آنها به زنجیره خوراکی مردم را کاهش دهد. هدف از این پژوهش بررسی نشان زغال زیستی و زغال زیستی بهسازی شده ذرت بر فراهمی کادمیوم و دگرش ویژگیهای زیستی یک خاک آلوده به کادمیوم بود. مواد و روشها: یک نمونه خاک رویین از لایه 20-0 سانتیمتری نمونهبرداری شد، سپس با غلظتهای گوناگون کادمیوم (Cd(NO3)2) آلوده شد. خاک آلوده برای پنج ماه در تناوبهای تر و خشک شدن گذاشته شد. زغالهای زیستی ماندههای ذرت (BC) و ماندههای ذرت بهسازی شده با کلرید آهن (Fe-BC) در دمای 500 درجه سلسیوس آماده شدند و در اندازه 2 درصد وزنی با نمونه خاک آمیخته شدند. نمونهها برای 90 روز در ظرفهای پلاستیکی منفذدار، در انکوباتور و در دمای ثابت (2±25)، نگهداری شدند. در پایان آزمایش برخی ویژگیهای شیمیایی خاک، غلظت فراهم کادمیوم و برخی ویژگیهای زیستی خاک مانند تنفس میکروبی، تنفس برانگیخته با سوبسترا و کربن زیستتوده میکروبی اندازهگیری شدند و بهره متابولیک (qCO2) تعیین شد. این پژوهش بهگونه آزمایش فاکتوریل، با دو فاکتور: آلودگی کادمیوم در سه اندازه صفر، 15 و 30 میلیگرم کادمیوم بر کیلوگرم خاک) و چگونگی زغال زیستی در سه تیمار بدون کاربرد زغال زیستی یا گواه آزمایش (CK)، زغال زیستی ماندههای ذرت (BC) و زغال زیستی ماندههای ذرت بهسازی شده با کلرید آهن (Fe-BC)، در چهارچوب طرح کاملاً تصادفی، در سه تکرار و در دمای آزمایشگاهی انجام شد. یافتهها: این پژوهش نشان داد که افزودن زغال زیستی و زغال زیستی بهسازی شده مایه افزایش pH خاک (بهترتیب 19/0 و 21/0 واحد)، گنجایش تبادل کاتیونی (7/6 و 9/10 درصد) و کربن آلی خاک (157 و 200 درصد) و کاهش غلظت فراهم کادمیوم در خاک (8/21 تا 5/41 درصد) شد. رویهمرفته، آلودگی کادمیوم در خاک مایه کاهش معنیدار (05/0p <) ویژگیهای زیستی خاک شد. کاربرد زغال زیستی و زغال زیستی بهسازی شده تنفس میکروبی پایه (%7/58-7/24)، تنفس برانگیخته با سوبسترا (%5/42-8/16)، کربن زیستتوده میکروبی (%6/58-5/24) و کارکرد آنزیم دهیدروژناز (%108-2/28) را به گونه معنیداری (05/0p <) افزایش داد. نشان تیمار Fe-BC بر دگرش فراهمی کادمیوم و ویژگیهای زیستی خاک بیشتر از نشان تیمار BC بود. نتیجهگیری: رویهمرفته، یافتههای این پژوهش نشان داد که زغال زیستی ذرت بهسازی شده با کلرید آهن میتواند بهساز آلی شایستهای برای تثبیت کادمیوم در خاک و بهبود کارکرد میکروبی در خاکهای آهکی آلوده به کادمیوم باشد. | ||
کلیدواژهها | ||
آلودگی کادمیوم؛ جاذب آلی؛ زیستتوده میکروبی؛ بهسازی زغال زیستی؛ کارکرد دهیدروژناز | ||
مراجع | ||
1.Alef, K., and Nannipieri, P. 1995. Methods in Applied Soil Microbiology and Biochemistry. Academic Press, London. 608p.
2.Al-Wabel, M.I., Hussain, Q., Usman, A.R., Ahmad, M., Abduljabbar, A., Sallam, A.S., and Ok, Y.S. 2017. Impact of biochar properties on soil conditions and agricultural sustainability: A review. Land Degradation and Development.29: 2124-2161.
3.Bremner, J.M. 1960. Determination of nitrogen in soil by the Kjeldahl method. J. Agric. Sci. 55: 11-33.
4.Cantrell, K.B., Hunt, P.G., Uchimiya, M., Novak, J.M., and Ro, K.S. 2012. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technology.107: 419-428.
5.El-Naggar, A., Lee, S.S., Rinklebe, J., Farooq, M., Song, H., Sarmah, A.K., immerman, A.R., Ahmad, M., Shaheen S.M., and Ok, Y.S. 2019. Biochar application to low fertility soils: a review of current status and future prospects. Geoderma. 337:
6.Fajardo, C., Costa, G., Nande, M., Botías, P., García-Cantalejo, J., and Martín, M. 2019. Pb, Cd, and Zn soil contamination: Monitoring functional and structural impacts on the microbiome. Applied Soil Ecology. 135: 56-64.
7.Fang, C., Zhang, T., Li, P., Jiang, R.F., and Wang, Y.C. 2014. Application of magnesium modified corn biochar for phosphorus removal and recovery from swine wastewater. Inter. J. Environ. Res. Pub. Health. 11: 9217-9237.
8.Gee, G.W., and Bauder, J.W. 1986. Particle-size analysis. P 383-410, In: A. Klute (ed.), Methods of soil analysis. Part 1. Physical and mineralogical methods. Madison, WI: Soil Science Society of America and American Society of Agronomy.
9.Igalavithana, A.D., Farooq, M., Kim, K.H., Lee, Y.H., Qayyum, M.F.,Al-Wabel, M.I., Lee, S.S., and Ok, Y.S. 2017. Determining soil quality in urban agricultural regions by soil enzyme-based index. Environmental geochemistry and health. 39:1531-
10.Jenkinson, D.S., and Ladd, J.N. 1981. Microbial biomass in soil measurement and turnover. P 415-471, In: E.A. Paul, and J.N. Ladd (eds.), Soil Biochemistry, Marcel Dekker, Inc., New York.
11.Karimi, A., Khodaverdiloo, H., and Rasouli-Sadaghiani, M. 2017. Characterisation of growth and biochemical response of Onopordum acanthium L. under lead stress as affected by microbial inoculation. Chemistry and Ecology. 33: 963-976.
12.Khadem, A., and Raiesi, F. 2017. Responses of microbial performance and community to corn biochar in calcareous sandy and clayey soils. Applied Soil Ecology. 114: 16-27.
13.Khadem, A., Raiesi, F., and Besharati, H. 2018. The effects of corn biochar on the chemical and microbiological characteristics of two calcareous clay and sandy soils. J. Soil Manage. Sust. Prod. 8: 25-47. (In Persian)
14.Knudsen, D., Peterson, G.A., and Pratt, P.F. 1982. Lithium, sodium and potassium. P 225-246, In: A.L.Page (ed.), Methods of soil analysis. Part 2. Chemical and microbiological properties. Madison, WI: Soil Science Society of America and American Society of Agronomy.
15.Lian, F., and Xing, B. 2017. Black carbon (biochar) in water/soil environments: Molecular structure, sorption, stability, and potential risk. Environmental Science and Technology. 51: 13517-13532.
16.Lindsay, W.L., and Norvel, W.A. 1978. Development of DTPA soil test for zinc, iron, manganese and copper. Soil Sci. Soc. Amer. J. 42: 421-428.
17.Liu, J., Xie, J., Chu, Y., Sun, C., Chen, C., and Wang, Q. 2008. Combined effect of cypermethrin and copper on catalase activity in soil. J. Soil Sed.5: 327-332.
18.Lu, K., Yang, X., Gielen, G., Bolan, N., Ok, Y.S., Niazi, N.K., Xu, S., Yuan, G., Chen, X., Zhang, X., and Liu, D. 2017. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. J. Environ. Manage. 186: 285-292.
19.Mukherjee, S., Weihermueller, L., Tappe, W., Vereecken, H., and Burauel, P. 2016. Microbial respiration of biochar-and digestate-based mixtures. Biology and Fertility of Soils. 52: 151-164.
20.Nelson, D.W., and Sommers, L.E. 1996. Total carbon, organic carbon and organic matter. P 961-1010, In: D.L. Sparks (ed.), Methods of soil analysis. Part 3. Chemical methods. Madison, WI: Soil Science Society of America and American Society of Agronomy.
21.Nie, C., Yang, X., Niazi, N.K., Xu, X., Wen, Y., Rinklebe, J., Ok, Y.S., Xu, S., and Wang, H. 2018. Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity: A field study. Chemosphere. 200: 274-282.
22.Novais, S.V., Zenero, M.D.O., Tronto, J., Conz, R.F., and Cerri, C.E.P.2018. Poultry manure and sugarcane straw biochars modified with MgCl2 for phosphorus adsorption. J. Environ. Manage. 214: 36-44.
23.Olsen, S.R., and Sommers, L.E. 1982. Methods of soil analysis. Part 2. Chemical and microbiological properties of Phosphorus. American Society of Agronomy, Inc., Madison, WI. 1143p.
24.Pan, J., and Yu, L. 2011. Effects of Cd or/and Pb on soil enzyme activities and microbial community structure. Ecological Engineering. 37: 1889-1894.
25.Paz-Ferreiro, J., Gascó, G., Gutiérrez, B., and Méndez, A. 2012. Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil. Biology and Fertility of Soils. 48: 511-517.
26.Pereira, J.L., Picanco, M.C., Silva, A.A., Santos, E.A., Tome, H.V.V., and Olarte, J.B. 2008. Effects of glyphosate and endosulfan on soil microorganisms in soybean crop. Planta Daninha. 26: 56-62.
27.Rayment, G.E., and Higginson, F.R. 1992. Laboratory handbook of soil and water chemical methods. Inkata Press, Melbourne. 330p.
28.Rengasamy, P., and Churchman, G.J. 1999. Cation exchange capacity, exchangeable cations 415 and sodicity. P 147-157, In: K.I. Peverill, L.A. Sparrow and D.J. Reuter (eds.), Soli analysis: an interpretation manual. Melbourne, CSIRO Publishing.
29.Rutigliano, F.A., Romano, M., Marzaioli, R., Baglivo, I., Baronti, S., Miglietta, F., and Castaldi, S. 2014. Effect of biochar addition on soil microbial community in a wheat crop. Europ. J. Soil Biol. 60: 9-15.
30.Sethi, S., and Gupta, S. 2014. Heavy metal impact on soil microbial biomass, soil dehydrogenase activity and soil respiration rate. Inter. J. Adv. Res. Biol. Sci. 1: 29-34.
31.Singh, B., Camps-Arbestain, M., and Lehmann, J. 2017. Biochar: A Guide to Analytical Methods. Csiro Publishing. 320p.
32.Song, D., Tang, J., Xi, X., Zhang, S., Liang, G., Zhou, W., and Wang, X. 2018. Responses of soil nutrients and microbial activities to additions of maize straw biochar and chemical fertilization in a calcareous soil. Europ. J. Soil Biol. 84: 1-10.
33.Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., and Yang, Z. 2015. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere. 125: 70-85.
34.Tao, Q., Li, B., Li, Q., Han, X., Jiang, Y., Jupa, R., and Li, T. 2019. Simultaneous remediation of sediments contaminated with sulfamethoxazole and cadmium using magnesium-modified biochar derived from Thalia dealbata. Science of the Total Environment. 659: 1448-1456.
35.Wang, L., Wang, Y., Ma, F., Tankpa, V., Bai, S., Guo, X., and Wang, X. 2019. Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater:A review. Science of the Total Environment. 668: 1298-1309.
36.Wang, M., Zhu, Y., Cheng, L., Andserson, B., Zhao, X., Wang, D., and Ding, A. 2018. Review on utilization of biochar for metal-contaminated soil and sediment remediation. J. Environ. Sci. 63: 56-173.
37.Wang, Y.Y., Ji, H.Y., Lyu, H.H., Liu, Y.X., He, L.L., You, L.C., Zhou, C.H., and Yang, S.M. 2019. Simultaneous alleviation of Sb and Cd availability in contaminated soil and accumulation in Lolium multiflorum Lam. after amendment with Fe-Mn-modified biochar. J. Clean. Prod. 231: 556-564.
38.Wu, C., Shi, L., Xue, S., Li, W., Jiang, X., Rajendran, M., and Qian, Z. 2019. Effect of sulfur-iron modified biochar on the available cadmium and bacterial community structure in contaminated soils. Sci. Total Environ. 647: 1158-1168. 39.Xu, Y., Seshadri, B., Sarkar, B., Wang, H., Rumpel, C., Sparks, D., Farrell, M., Hall, T., Yang, X., and Bolan, N. 2018. Biochar modulates heavy metal toxicity and improves microbial carbon use efficiency in soil. Science of the Total Environment. 621: 148-159.
40.Yu, H., Zou, W., Chen, J., Chen, H., Yu, Z., Huang, J., Tang, H., Wei, X., and Gao, B. 2019. Biochar amendment improves crop production in problem soils: A review. J. Environ. Manage. 232: 8-21.
41.Yuan, P., Wang, J., Pan, Y., Shen, B., and Wu, C. 2019. Review of biochar for the management of contaminated soil: Preparation, application and prospect. Science of the Total Environment.659: 473-490.
42.Zhang, F.P., Li, C.F., Tong, L.G., Yue, L.X., Li, P., Ciren, Y.J., and Cao,C.G. 2010. Response of microbial characteristics to heavy metal pollution of mining soils in central Tibet, China. Applied Soil Ecology. 45: 144-151.
43.Zhu, X., Chen, B., Zhu, L., and Xing, B. 2017. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. Environmental Pollution.227: 98-115. | ||
آمار تعداد مشاهده مقاله: 625 تعداد دریافت فایل اصل مقاله: 361 |