
تعداد نشریات | 13 |
تعداد شمارهها | 623 |
تعداد مقالات | 6,501 |
تعداد مشاهده مقاله | 8,620,610 |
تعداد دریافت فایل اصل مقاله | 8,210,939 |
تاثیر پلیآمینها بر پاسخهای آنتیاکسیدانی گیاه گلرنگ (Carthamus tinctorius) در شرایط تنش خشکی | ||
پژوهشهای تولید گیاهی | ||
مقاله 12، دوره 26، شماره 2، شهریور 1398، صفحه 157-171 اصل مقاله (1.41 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/jopp.2019.14942.2337 | ||
نویسندگان | ||
ژیلا توپچی خسروشاهی1؛ سید یحیی صالحی لیسار* 2؛ کاظم قاسمی گلعذانی3؛ روح اله متفکر آزاد4 | ||
1دانشجوی دکتری فیزیولوژی گیاهی گروه علوم گیاهی دانشکده علوم طبیعی دانشگاه تبریز | ||
2دانشیار گروه علوم گیاهی، دانشکده علوم طبیعی، دانشگاه تبریز ، استان ادربایجان شرقی ،تبریز، بلوار 29 بهمن ، دانشگاه تبریز | ||
3استاد گروه اکوفیزیولوژی، دانشکده کشاورزی، دانشگاه تبریز | ||
4استادیار گروه علوم گیاهی، دانشکده علوم طبیعی، دانشگاه تبریز | ||
چکیده | ||
سابقه و هدف: خشکی رایجترین عامل تنشزای غیر زیستی میباشد که بیش از سایر عوامل، رشد و نمو گیاهان را کاهش میدهد. از این جهت، شناسایی عوامل موثر در افزایش تحمل گیاهان نسبت به خشکی ضروری است. گیاهان در مقابله با خشکی ترکیبات آنتی-اکسیدانی را برای مقابله با تنش اکسیداتیو افزایش میدهند. پلیآمینها به عنوان تنظیمکنندههای رشد، نقش مهمی در حفظ تمامیت غشاهای سلولی و کاهش تولید گونههای اکسیژن فعال در شرایط تنش خشکی دارند. گلرنگ یک گیاه زراعی روغنی، دارویی و صنعتی از تیره آفتابگردان است. بسیاری از مطالعات بر روی گیاهان دیگر نشان دادهاند که پلیآمینها سبب افزایش تحمل به تنشهای محیطی میشوند، اما واکنش گلرنگ به غلظتهای مختلف پوتریسین+اسپرمین تحت تنش خشکی مشخص نیست. بر همین اساس، این پژوهش برای بررسی تاثیر پلیآمینهای مزبور روی فعالیت آنتیاکسیدانهای آنزیمی و غیر آنزیمی، میزان پراکسیداسیون لیپیدی و پایداری غشاها در گلرنگ انجام گرفت. مواد و روشها: این آزمایش در سال 1396-1395 به صورت فاکتوریل در قالب طرح بلوکهای کامل تصادفی با سه تکرار در گلخانه دانشگاه تبریز انجام گرفت. در این پژوهش تاثیر غلظتهای مختلف پوتریسین+اسپرمین (0+0، 40+40، 40+60 و 60+40 میکرومولار) بر فعالیت آنزیمهای آنتیاکسیدان (آسکوربات پراکسیداز، کاتالاز، سوپراکسیددیسموتاز و پراکسیداز)، غلظت مالوندیآلدئید، پراکسید هیدروژن و نشت الکترولیت، آنتیاکسیدانهای غیرآنزیمی (فنلها، فلاونوئیدها و آنتوسیانینها) در گلرنگ تحت آبیاری کامل (100 درصد ظرفیت زراعی) و آبیاری محدود (40 درصد ظرفیت زراعی) مورد بررسی قرار گرفت. گیاهان در مرحله 7-6 برگی برای اندازهگیریهای مختلف برداشت شدند. یافتهها: آبیاری و محلولپاشی پلیآمینها، میزان آنتیاکسیدانهای آنزیمی و غبر آنزیمی، غلظت مالوندیآلدئید، پراکسید هیدروژن و نشت الکترولیت را به طور معنیداری تحت تاثیر قرار داد. اثر متقابل این عوامل نیز برای تمام صفات معنیدار بود. فعالیت آنزیمهای کاتالاز، پراکسیداز و سوپر اکسیددیسموتاز، فلاونوئید کل برگها و و آنتوسیانینها در اندام هوایی به طور معنیداری تحت تیمار خشکی نسبت به گیاهان شاهد افزایش یافت. محلولپاشی غلظتهای 40+60 میکرومولار و 60+40 میکرومولار پوتریسین+اسپرمین در گیاهان تحت تنش سبب افزایش معنیدار فعالیت آنزیمهای کاتالاز، سوپراکسیددیسموتاز و غلظت آنتوسیانینها گردید. تنش خشکی در برگها سبب افزایش معنیدار محتوای مالوندیآلدئید، پراکسید هیدروژن و نشت الکترولیتها گردید. غلظت مالوندیآلدئید و میزان نشت الکترولیتها در نتیجه کاربرد پوتریسین+ اسپرمین به طور معنیداری کاهش یافتند. نتیجهگیری: تنش خشکی با القاء تنش اکسیداتیو اثر منفی بر رشد گیاه گلرنگ داشت. به طور کلی کاربرد 40+60 میکرومولار و 60+40 میکرومولار پوتریسین+اسپرمین در کاهش گونههای فعال اکسیژن ناشی از کمبود آب موثر بودند. محلولپاشی برگی 60+40 میکرومولار پوتریسین+اسپرمین، پراکسیداسیون لیپیدها، نشت الکترولیت و غلظت پراکسید هیدروژن را از طریق افزایش ظرفیت آنتیاکسیدانی و افزایش فلاونوئیدها و آنتوسیانینها کاهش داد و منجر به افزایش تحمل خشکی گلرنگ گردید. نتایج این مطالعه نشان داد که محلولپاشی 40+60 میکرومولار و 60+40 میکرومولار پوتریسین+اسپرمین میتواند برای کاهش اثرات مخرب تنش خشکی در مراحل اولیه رشد گیاه استفاده شود. | ||
کلیدواژهها | ||
پراکسیداسیون لیپید؛ پلیآمین؛ خشکی؛ فعالیتهای آنتیاکسیدانی؛ گلرنگ | ||
مراجع | ||
1.Amri, E. and Shahsavar, A.R. 2010. Response of lime seedling (Citrus aurantifolia L.) to exogenous spermidine treatments under drought stress. Aust. J. Basic. Appl. Sci. 4: 9. 4483-4489.
2.Ashraf, M. and Ali, Q. 2008. Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environ. Exp. Bot. 63: 1. 266-273.
3.Bitrián, M., Zarza, X., Altabella,T., Antonio, F. and Alcázar, R.2012. Polyamines under Abiotic Stress: Metabolic Crossroads and Hormonal Crosstalks in Plants. Metab. 2: 3. 516-528.
4.Boominathan, R. and Doran, P.M. 2002. Ni- Induced oxidative stress in roots of the Ni hyper accumulator, Alyssum bertolonii. New Phytol. 156: 2. 205-215.
5.Chance, B. and Maehly, A.C. 1955. Assay of catalases and peroxidases: Methods Enzymol. 2: 764-755.
6.Chang, C., Yang, M., Wen, H. andChern, J. 2002. Estimation of total flavonoid content in Propolis by two complementary colorimetric methods.J. Food Drug Anal. 10: 178-182.
7.Daneshmandi, M.Sh. and Azizi, M. 2009. Survey of effect of water stress and application of mineral zeolite on quantity and quality properties of Ocimum basilicum L. var. keshkeny levelu) In: 6th Congress of Iranian Horticultural Science, Iran, 1-2 March 2009, Pp: 123-129. (In Persian)
8.Farhangi-Abriz, S. and Ghassemi-Golezani, K. 2018. How can salicylic acid and jasmonic acid mitigate salt toxicity in soybean plants? Ecotoxicol. Environ. Saf. 147: 1010-1016.
9.Farooq, M., Wahid, A. and Lee, D.J. 2009. Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiol. Plant. 31: 1. 937-945.
10.Groppa, M.D. and Benavides, M.P. 2008. Polyamines and abiotic stress: recent advances. Amino Acids. 34. 1: 35-45.
11.Hajiboland, R. and Ebrahimi, N. 2011. Growth, photosynthesis and phenolic metabolism in tobacco plants under salinity and application of polyamines. Iran. J. Plant Biol. 3: 1. 13-26. (In Persian)
12.Harinasut, P., Poonsopa, D., Roengmongkol, K. and Charoensataporn, R. 2003. Salinity effects on antioxidant enzymes in mulberry cultivar. Sci. Asian. 29: 109-113.
13.Hojati, M., Modarres-Sanavy, S.M.M., Karimi, M. and Ghanati, F. 2011. Responses of growth and antioxidant systems in Carthamus tinctorius under water deficit stress, Acta Physiol. Plant. 33: 1. 105-112.
14.Hussain, S., Farooq, M., Wahid, M.A. and Wahid, A. 2013. Seed primingwith putrescine the drought resistance of maize hybrids. Int. J. Agric. Biol.15: 6. 1349-1353. 15.Krouma, A., Fujimura, T. and Abdely, C. 2015. Growth, photosynthetic activity and water relations three Tunsian chickpea genotypes (Cicer arietinum L.) subjected to a progressive water deficit stress. Int. Res. J. 5: 1. 206-214.
16.Lutts, S., Kinet, J.M. and Bouharmont, J. 1996. NaCl- induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann. Bot. 78: 389-398.
17.Meda, A., Lamien, C.E., Romito, M., Millogo, J. and Nacoulma, O.G. 2005. Determination of the total phenolic, flavonoid and proline contents in Burkinafasa honey, as well as their radical scavenging activity. Food Chem. 91: 3. 571-577.
18.Mirzaee, M., Moini, A. and Ghanati, F. 2013. Effects of drought stress on the lipid peroxidation and antioxidant Enzyme activities in two canola (Brassica napus L.) cultivars. J. Agric. Sci. Technol. 15: 593-602.
19.Mita, S., Murano, N., Akaike, M.and Nakamura, K. 1997. Mutants of Arabidopsis thaliana with pleiotropic effects on the expression of the gen for beta-amylase and on the accumulation of anthocyanin that is inducible by sugars. Plant J. 11: 4. 841-851.
20.Mustafavi, S.H., Shekari, F., Nasiri,Y. and Hatami-Maleki, H. 2015. Nutritional and biochemical response of water-stressed valerian plants to foliar application of spermidine. Biol. Forum. Int. J. 7: 1. 1811-1815.
21.Nazarli, H., Hadian, J. and Ahmadi, A. 2015. Evaluation of putrescine effect in drought tolerance inducing and changing of enzyme activities in Matricaria Chamomilla L. plant. Iran. J. Agric. Sci. 46: 2. 222-293.
22.Obinger, C., Maj, M., Nicholls, P. and Loewen, P. 1997. Activity, peroxide compound formation, and heme d synthesis in Escherichia coli HPII catalase. Arch Biochem. Biophys.342: 1. 58-67.
23.Pal, M., Szalai, G. and Janda, T. 2015. Polyamines are important in abiotic stress signaling. Plant Sci. 1: 1. 1-34.
24.Saikat, P. and Aryadeep, R. 2016. Seed priming with spermine ameliorates salinity stress in the germinated seedlings of two rice cultivars differing in their level of salt tolerance. Trop. Plant Res. 3: 3. 616-633.
25.Salehi-lisar, S.Y. and Bakhshayeshan-Agdam, H. 2016. Drought stress tolerance in plants: causes, consequences and tolerance. P 35-50,In: M.A. Hossain, Sh.H. Wani, S. Bhattacharjee, D.J. Burritt and L.S. Phan Tran, Eds. Springer Press. London.
26.Shukla, V., Ma, Y. and Merevitz, V. 2015. Creeping Bentgrass responses to drought stress and polyamine application, J. Am. Soc. Hort. Sci.140: 1. 94-101.
27.Winterbourn, C.C., Mc Grath, B.W.and Carrell, R.W. 1976. Reactions involving superoxide and normal unstable hemoglobins, Biochem. J.155: 3. 493-502.
28.Yamaguchi, K., Takahashi, Y., Berberich, T., Imai, A., Takahashi, T.and Michael, A.J. 2007. A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochem. Biophys. Res. Commun. 352: 2. 486-490.
29.Zamani, Z., Niakan, M. and Gorbanly, M. 2013. Effect of exogenous putrescine in phenolic composition, antioxidant enzymes and nitrate reductase of Hyosyamus niger under drought stress, J. Iran. Plant Ecophysiol. Res. 3: 78-90. (In Persian)
30.Zhang, Zh. and Hung, Zhi. 2013. Effects of endogenous abscisic acid, jasmonic acid, polyamines, and polyamine oxidase activity in tomato seedlings under drought stress. Sci. Hortic.159: 172-177.
31.Zhou, L., Yn, Zh., Danda, P., Xiaojan, W., Yan, P. and Yan, Y. 2015. Polyamine regulates tolerance to water stress in leaves of white clover associated with antioxidant defense and dehydrin genes via involvement in calcium messenger system and hydrogen peroxide signaling. Frontiers Physiol.6: 280. 1-16. | ||
آمار تعداد مشاهده مقاله: 748 تعداد دریافت فایل اصل مقاله: 818 |