
تعداد نشریات | 13 |
تعداد شمارهها | 623 |
تعداد مقالات | 6,501 |
تعداد مشاهده مقاله | 8,622,026 |
تعداد دریافت فایل اصل مقاله | 8,211,646 |
بررسی تاثیر غلظت و زمان تنک شیمیایی و دستی بر بهبود صفات کمی و کیفی میوه شلیل رقم "شبرنگ" | ||
پژوهشهای تولید گیاهی | ||
مقاله 7، دوره 26، شماره 1، خرداد 1398، صفحه 89-106 اصل مقاله (491.34 K) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/jopp.2019.14374.2289 | ||
نویسندگان | ||
وهب اسدی* 1؛ منصور غلامی2؛ نوشین کاظمی3؛ موسی رسولی4 | ||
1پژوهشکده ملی کشمش و انگور | ||
2دانشگاه بوعلی | ||
3گروه باغبانی، دانشگاه تبریز | ||
4عضو هیات علمی دانشگاه ملایر | ||
چکیده | ||
سابقه و هدف: در اغلب درختان میوه با وجود تبدیل نشدن همه گل ها به میوه، میزان باردهی بیش از توان درخت می باشد و این امر باعث کاهش کیفیت محصول و کاهش عمر درخت می گردد. در حالی که در بسیاری از درختان میوه تبدیل 5 تا 15 درصد از گل ها به میوه منجر به تولید اقتصادی می گردد. باید تلاش کرد تا اندازه و کیفیت میوه تولید شده سازگار با شرایط فروش در بازار باشد. هدف از علم باغبانی به حد مطلوب رساندن بارآوری سالانه و تولید محصول در سراسر طول عمر باغ می باشد. این پژوهش برای بررسی تاثیر چند تنک کننده معدنی و یک تنظیم کننده زیستی بر ویژگیهای کمی و کیفی میوه شلیل رقم "شبرنگ" و مقایسه آن با تنک دستی گل و میوه صورت گرفت. مواد و روش ها: آزمایش در سال 1393-1392 در یک باغ تجاری در شهرستان سمیرم به صورت طرح بلوکهای کامل تصادفی با 15 تیمار و 5 تکرار انجام شد. تیمارها شامل سه ترکیب گوگرد- آهک (6درصد، 8 درصد و دوبار کاربرد 6 درصد)، آمونیوم تیو سولفات (20، 25 میلی لیتر بر لیتر و دوبار کاربرد 20 میلی لیتر بر لیتر) و تنظیم کننده آپوجی (300، 450 میلی گرم در لیتر و دوبار کاربرد 300 میلی گرم در لیتر) و دو تیمار تنک دستی گل در مرحله 80-70 درصد گلدهی و تنک دستی میوه چهار هفته پس از مرحله تمام گل بود. تیمارهای دو بار کاربرد در دو مرحله 40-30 درصد گلدهی و سپس در 80-70 درصد گلدهی به صورت محلول پاشی اعمال گردید. یافته ها: نتایج نشان داد که تمام تیمارها روی صفات مورد بررسی در سطح یک درصد تاثیر معنی دار داشت. تیمارها باعث کاهش تشکیل میوه شدند به طوری که در تیمار تنک دستی گل، دوبار مصرف آمونیوم تیو سولفات 20 میلی لیتر در لیتر و دوبار مصرف گوگرد آهک 6درصد میزان تشکیل میوه تا 50 درصد کاهش یافت. تنک دستی گل از نظر اندازه (32/113 سانتیمتر مکعب) و وزن (34/151 گرم) میوه بهترین تیمار بود و بیشترین عملکرد مربوط به شاهد (42/90 کیلوگرم در درخت) بود و کمترین آن مربوط به تیمار تنک دستی میوه (04/64 کیلوگرم در درخت) بود. راندمان عملکرد در تیمار شاهد (32/3) بیشتر از سایر تیمار ها بود و کمترین مقدار آن مربوط به تیمار دوبار مصرف گوگرد آهک 6درصد (99/1) و آپوجی دوبار مصرف 300 میلی گرم در لیتر (01/2) بود. از نظر صفات کیفی بیشترین مواد جامد محلول در تیمار تنک دستی گل (49/17درصد) و سپس میوه (53/16درصد) ثبت گردید و پس از آن بهترین نتایج در تیمارهای دوبار مصرف ترکیبات تنک کننده بدست آمد. بیشترین اسید کل در تیمار گوگرد آهک 6درصد (88/4 میلی گرم در 100 میلی لیتر آب میوه) ثبت شد و از نظر شاخص رسیدگی بیشترین شاخص مربوط به تنک دستی گل (26/4) بود. بیشترین میزان سطح برگ در تیمار دوبار مصرف غلظت 20 میلی لیتر بر لیتر ATS (42/70 سانتیمتر مربع) و دوبار مصرف اوره 4درصد (18/69 سانتیمتر مربع) بود و کمترین میزان سطح برگ در شاهد (81/55 سانتیمتر مربع) ثبت گردید. شاخص کیفی رنگ میوه در تیمار تنک دستی گل (74/4) از سایر تیمار ها بیشتر بود و کمترین رنگ میوه مربوط به تیمار گوگرد آهک 6درصد (38/3) بود. نتیجه گیری: تنک دستی تنک منظم تر، میوه های بزرگتر، پر رنگ تر و با قند بالاتر حاصل کرد. همچنین نتایج تنک دستی گل بهتر از تنک دستی میوه بود. براساس نتایج به طور کلی استفاده دو مرحله ای ترکیبات، اثرات مناسبتری بر صفات کمی و کیفی میوه ایجاد کرد. ترکیب گوگردآهک در تیمار 8درصد و دوبار مصرف 6درصد مقداری سوزانندگی برگ ایجاد کرد. | ||
کلیدواژهها | ||
شلیل؛ گوگرد-آهک؛ آمونیوم تیو سولفات؛ آپوجی؛ اوره | ||
مراجع | ||
1.Abdelli, M., Moghrani, H., Aboun, A. and Maachi, R. 2016. Algerian mentha pulegium l. Leaves essential oil: chemical composition, antimicrobial, insecticidal and antioxidant activities. Ind. Crops Prod. 94: 197-205.
2.Karimi, E., Oskoueian, E., Karimi, A., Noura, R. and Ebrahimi, M. 2018. Borago Officinalis L. flower: a comprehensive study on bioactive compounds and its health-promoting properties. J. Food Meas. Charact.12: 826-838.
3.Miceli, C., Moncada, A., Vetrano, F., Danna, F. and Miceli, A. 2019. Suitability of Borago officinalis for minimal processing as fresh-cut. Prod. Hort.5: 4. 66.
4.Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C. and Crowley, D. 2011. Biochar effects on soil biota: A review. Soil Bio. Biochem.43: 9. 1812-1836.
5.Seehausen, M.L., Gale, N.V., Derange, S., Hudson, V., Liu, N., Michener, J., Thurston, E., Williams, C., Smith, S.M. and Thomas, S.C. 2017. Is there a positive synergistic effect of biochar and compost soil amendments on plant growth and physiological performance? Agron. 7: 13. 1-15.
6.Hafeez, Y., Iqbal, S., Jabeen, K., Shahzad, S., Jahan, S. and Rasul, F .2017. Effect of biochar application on seed germination and seedling growth of Glycine max (l.) Merr. under drought stress. Pak. J. Bot. 49: 7-13.
7.Ghassemi, S., Ghassemi-Golezani, K. and Zehtab Salamis, S. 2019. Changes in antioxidant enzymes activities and physiological traits of ajowan in response to water stress and hormonal application. Sci. Hort. 246: 957-964.
8.Nazar, R., Umar, S., Khan, N.A.and Sareer, O. 2015. Salicylic acid supplementation improves photosynthesis and growth in mustard through changes in proline accumulation and ethylene formation under drought stress. S. Afr.J. Bot. 98: 84-94.
9.Batool, A., Taj, S., Rashid, A., Khalid, A., Qadeer, S., Saleem, A.R. and Ghufran, M.A. 2015. Potential of soil amendments biochar and gypsum in increasing water use efficiency of Abelmoschus Esculentus L. Moench. Front. Plant Sci. 6: 1-13.
10.Haider, G., Koyro, H.W., Azam, F., Steffens, D., Müller, C. and Kammann, C. 2015. Biochar but not humic acid product amendment affected maize yields via improving plant-soil moisture relations. Plant Soil. 395: 1-2. 141-157.
11.Sairam, R.K. and Srivastsva, G.C.2001. Water stress tolerance of wheat (triticum aestivium l.) vaiation in hydrogen peroxide assimilation and antioxidant activity in tolerant and susceptible genotype. J. Agron. Crop Sci. 186: 1. 63-700.
12.Kramer, P.S. 1983. Water Relations of Plants. Academic Press. New York. 1st edition. 489: 342-415.
13.Mita, R. 1997. Oxidative stress. Antioxidants and stress tolerance. Trend. Plant Sci.. 7: 9. 405-410.
14.Krizek, D.T., Britz, S.J. and Mirecki, R.M. 1998. Inhibitory effects of ambient levels of solar UV-A and UV-B radiation on growth of cv. new red fire lettuce. Physiol. Plant. 103: 1. 1-7.
15.Papakosta, D.K. and Gagianas, A.A. 1991. Nitrogen and dry matter accumulation, remobilization and losses for Mediterranean wheat during grain filling. Agron. J. 83: 5. 856-870.
16.Saneoka, H., Moghaieb, R.E.A., Premachandra, G.S. and Fujita, K. 2004. Nitrogen nutrition and water stress effects on cell membrane stabilityand leaf water relations in Agrostis Palustris Huds. Environ. Exp. Bot.52: 2. 131-138.
17.Qayyum, A., Razzaq, A., Bibi, Y., Khan, S., Abbasi, S.K., Sher, A., Mehmood, A., Ahmed, W., Mahmood, I., Manaf, A., Khan, A., Farid, A. and Jenks, M. 2018. Water stress effects on biochemical traits and antioxidant activities of wheat (Triticum aestivum L.) under in vitro conditions. Acta Agri Scand. 68: 4. 283-290.
18.Tarighaleslami, M., Kafi, M., Nezami, A. and Zarghami, R. 2017. Examining interactions of chilling and draught stresses on chlorophyll (SPAD), RWC, electrolyte leakage and seed performance in three hybrid varieties of maize. J. Crop Breed. 9: 23. 146-156. (In Persian)
19.Khan, N.A., Syeed, S., Masood, R., Nazar, A. and Iqbal, N. 2010. Application of salicylic acid increases contents of nutrients and anti-oxidative metabolism in mung bean and alleviates adverse effects of salinity stress. Int. J. Plant Sci. 1: 1. 1-8.
20.Nautiyal, P.C., Rachaputi, N.R. and Joshi, Y.C. 2002. Moisture-deficit-induced changes in leaf-water content, leaf carbon exchange rate and biomass production in groundnut cultivars differing in specific leaf area. Field Crops Res. 74: 1. 67-79.
21.Bayat, H., Mardani, H., Arouie, H. and Salahvarzi, Y. 2011. Effects of salicylic acid on morphological and physiological characteristics of cucumber seedling (Cucumis Sativus Cv. Super Dominus) under drought stress. J. Plant Prod. 18: 3. 63-76. (In Persian)
22.Baronti, S., Vaccari, F.P., Miglietta, F., Calzolari, C., Lugato, E., Orlandini, S., Pini, R., Zulian, C. and Genesio, L. 2014. Impact of biochar application on plant water relations in (Vitis vinifera L.). Eur J. Agron. 53: 38-44.
23.Salim Akhtar, S., Guitong, L., Neumann Andersend, M. and Liu, F. 2018. Biochar enhances yield and quality of tomato under reduced irrigation. Agri Water Manag. 138: 37-44.
24.Fischer, B., Manzoni, B., Morillas, L., Garcia, M., Johnson, M.S. and Lyon, S.W. 2019. Improving agricultural water use efficiency with biochar – a synthesis of biochar effects on water storage and fluxes across scales. Sci. Total Environ. 657: 853-862.
25.Azizian Shermeh, O., Taherizadeh, M., Valizadeh, M. and Qasemi, A. 2018. Robial and antioxidant activities and determining phenolic and flavonoid contents of the extracts of five species from different families of the medicinal plants grown in Sistan and Baluchistan province. J. Med Sci. 7: 465‐479.(In Persian)
26.Ali, M.B., Hahn, E.J. and Paek, K.Y. 2007. Methyl jasmonate and salicylic acid induced oxidative stress and accumulation of phenolics in Panax ginseng bioreactor root suspension cultures. Molecules. 12: 3. 607-621.
27.Shaki F., Ebrahimzadeh, H. and Niknam, V. 2018. The effect of interaction between salicylic acid and penconazole on physiological and biochemical responses of safflower (Carthamus tinctorius L.) under salinity. J. Plant Res. 31: 2. 469-481. (In Persian)
28.Różyło, K., Świeca, M., Gawlik-Dziki, U. and Stefaniuk, M. 2017. The potential of biochar for reducing the negative effects of soil contamination on the phytochemical properties and heavy metal accumulation in wheat grain. Patryk Oleszczuk. Agr Food Sci.26: 1. 34-46.
29.Ghassemi-Golezani, K. and Lotfi, R. 2015. The impact of salicylic acid and silicon on chlorophyll a fluorescence in mung bean under salt stress. Russ. J. Plant Phys. 62: 5. 611-616.
30.Hashemi, A. and Shahani, A. 2019. Effects of salt stress on the morphological characteristics, total phenol and total anthocyanin contents of Roselle (Hibiscus sabdariffa L.). Plant Phys. Reports, 24: 2. 210-214.
31.Hashem, I. and Mohamed, M.H. 2018. Aerodynamic performance enhancements of H-rotor Darrieus wind turbine. Energy. 142: 531-545.
32.Razavizadeh, R. and Adabavazeh, F. 2017 Effects of sorbitol on essentialoil of (Carum copticum L.) underin vitro culture. Rom Biotech. Lett.22: 1. 12281-12289.
33.Heidari, M. and Minaei, A. 2014. Effects of drought stress and humic acid application on flower yield and content of macro-elements in medical plant borage (Borago officinalis L.) J. Plant Prod Res. 21: 1. 167-182. (In Persian)
34.Jones, J. and Benton, J. 2012. Plant nutrition and soil fertility manual. 2nd Edition. CRC Press Inc. Boca Raton, FL: 304.
35.Gholinezhad, R., Sirousmehr, A. and Fakheri, B. 2016. Evaluation of irrigation regimes and use of organic fertilizers on qualitive and quantitive yield of borage (Borago officinalis L.). J. Crop Ecophy. 10: 3. 683-696.(In Persian)
36.Prasad, P.V.V., Staggenborg, S.A. and Ristic, Z. 2008. Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. In: Response of crops to limited water: understanding and modeling water stress effects on plant growth processes. (Eds. Ahuja, L.R., Reddy, V.R., Saseendran, S.A. and Yu, Q. 301-355. American Society of Agronomy, Crop Science Society of American, Soil Science Society of American. Madison, USA.
37.Nasr Esfahani, M. and Madadkar Haghjou, M. 2015. Response of Glycine max to drought stress in relation to growth parameters and some key enzymes of carbon and nitrogen metabolism. Iran. J. Plant Bio. 7: 24. 77-89.
38.Sun, H., Zhang, H., HI, W., Zhuo, M. and Ma, X. 2019. Effect of biochar on nitrogen use efficiency, grain yield and amino acid content of wheat cultivated on saline soil. Plant Soil Environ.65: 2. 83-89.
39.Yadava, V., Karab, T., Singh, S., Kumar Singha, A. and Khare, P. 2019. Benefits of biochar over other organic amendments: responses for plant productivity (Pelargonium graveolens L.) and nitrogen and phosphorus losses. Ind. Crops Prod. 131: 96-105.
40.Cao, H., Ning, L., Xun, M., Feng, F., Li, P., Yue, S., Song, J., Zhang, W. and Yang, H. 2019. Biochar can increase nitrogen use efficiency of Malus hupehensis by modulating nitrate reduction of soil and root. App. Soil Eco. 135: 25-32.
41.Gholamhoseini, M., Ghalavand, A., Dolatabadian, A., Jamshidi, E. and Khodaei-Joghan, A. 2013. Effectsof arbuscular mycorrhizal inoculationon growth, yield, nutrient uptakeand irrigation water productivityof sunflowers grown under drought stress. Agric Water Management,117: 106-114.
42.Jaleel, C.A., Manivannan, P., Wahid,A., Farooq, M., Al-Juburi, H., Somasundaram, R. and Panneersel Vam, R. 2009. Drought stress in plants: A Review on morphological characteristics and pigments composition. Intel. J. Agri. Biol. 11: 1. 100-105.
43.Abdollahi Mayvan, M., Khorramdel, S., Koocheki, A. and Ghorbani, R. 2018. Evaluation of yield and yield component of borage (Borago officinalis L.) affected as irrigation level and plant density. J. Agroecol. 10: 2. 327-339. (In Persian) 44.Divsalarmary, M.Z., Thamasbisarvestani, A.M., Modaressanavi, A. and Hamidi. 2017. Study the effect of drought stress on oil, protein percent and fatty acids composition of soybean grain. J. Ecoph. 8: 44-55. (In Persian) | ||
آمار تعداد مشاهده مقاله: 551 تعداد دریافت فایل اصل مقاله: 364 |