
تعداد نشریات | 13 |
تعداد شمارهها | 622 |
تعداد مقالات | 6,501 |
تعداد مشاهده مقاله | 8,616,684 |
تعداد دریافت فایل اصل مقاله | 8,206,501 |
کاهش هدررفت خاک و آب از طریق تحریک باکتریهای خاکزی در مقیاس کرتهای کوچک آزمایشگاهی | ||
مجله پژوهشهای حفاظت آب و خاک | ||
مقاله 13، دوره 25، شماره 4، مهر و آبان 1397، صفحه 243-257 اصل مقاله (637.23 K) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/jwsc.2018.14765.2978 | ||
نویسندگان | ||
حسین خیرفام1؛ سیدحمیدرضا صادقی* 2؛ بهروز زارعی دارکی3؛ مهدی همایی4 | ||
1استادیار، گروه علوم محیط زیست، پژوهشکده مطالعات دریاچه ارومیه، دانشگاه ارومیه، ارومیه | ||
2استاد گروه مهندسی آبخیزداری، دانشکده منابع طبیعی و عضو هسته پژوهشی اگروهیدرولوژی، دانشگاه تربیت مدرّس، مازندران، نور | ||
3استادیار گروه زیستشناسی دریا، دانشگاه تربیت مدرّس، دانشکده علوم دریایی، مازندران، نور. | ||
4استاد گروه مهندسی آبیاری و زهکشی و رئیس هسته پژوهشی اگروهیدرولوژی، دانشگاه تربیت مدرّس، دانشکده کشاورزی، تهران | ||
چکیده | ||
سابقه و هدف: دستیابی به توسعهی پایدار بدون حفاظت از منابع خاک و آب و کاهش تخریب اراضی امکانپذیر نمیباشد. از طرفی در اراضی با تراکم محدود پوشش گیاهی، پوستههای زیستی خاک تشکیل شده در اثر فعالیّت ریزموجودات خاکزی نقش مهمی در حفظ و بهبود شرایط پایداری خاک دارند. از آنجاییکه پوستههای زیستی در اراضی تخریب شده توسعه مناسبی نداشته، لذا جدیداً احیاء این پوستهها با ایجاد شرایط مناسب برای افزایش فعالیت ریزموجودات خاکزی از طریق کاربرد فناوریهای نوین زیستی از قبیل کاربرد محرّکهای غذایی ریزموجودات خاکزی مورد توجه قرار گرفته است. البته، اثرگذاری سریع و پایدار راهکارهای حفاظتی خاک از معیارهای مهم در انتخاب اقدامات مدیریتی بوده که در این راستا پژوهش حاضر با هدف کاراییسنجی یک نوع تزریق مادهی محرّک غذایی باکتریهای خاکزی با نام B4 بهعنون افزودنی کاملاً زیستی در کاهش هدررفت خاک و رواناب در شرایط آزمایشگاهی و مقیاس کرتهای کوچک فرسایشی برنامهریزی شد. مواد و روش: خاک مورد مطالعه از دامنههای حساس به فرسایش و تخریبشده منطقهی مرزنآباد-کندلوس واقع در حوزهی آبخیز چالوسرود و غرب استان مازندران تهیه شده و پس از آمادهسازی آن، کرتهای آزمایش (به ابعاد 5/0 متر و حجم کلی 125/0 مترمکعب) مطابق با لایهبندی، دانهبندی و جرم مخصوص ظاهری منطقه مادری خاک با بافت سیلتی-رسی-لومی پر شدند. مادهی محرّک غذایی (B4) نیز بهترتیب با ترکیب 15، چهار و پنج گرم بر لیتر استات کلسیم، عصارهی مخمر و دکستروز آماده شده و از طریق اسپری سطحی روی کرتها تزریق شد. برای انجام آزمایش مذکور، دو تیمار تزریق B4 و شاهد با سه تکرار مد نظر قرار گرفت. در نهایت پس از 15 روز، مطابق با ویژگی بارانهای خیلی فرساینده منطقه مادری، شبیهسازی باران به مدّت 100 دقیقه و شدّت 50 میلیمتر در ساعت در محل آزمایشگاه شبیهساز باران و فرسایش دانشگاه تربیّت مدرس روی کرتهای آزمایش بهتعداد شش عدد و با طرح کاملاً تصادفی انجام و مؤلفههای هدررفت خاک و رواناب اندازهگیری شد. یافتهها: مقایسه آماری نتایج نشان داد که تزریق B4 با تحریک تکثیر باکتریهای خاکزی و در نتیجهی اثرگذاری باکتریها روی برخی ویژگیهای خاک باعث بهبود مؤلفههای هدررفت خاک و رواناب شد که در این میان میزان اثرگذاری آن روی کاهش هدررفت خاک بیشتر از رواناب سطحی بود. بهگونهای که زمان شروع و زمان تا اوج رواناب در تیمار شاهد (بدون تزریق) بهترتیب از 83/24 به 22/49 دقیقه و از 66/78 به 66/92 دقیقه در تیمار تزریق B4 بهصورت معنیدار (05/0p <) افزایش یافت. همچنین حجم و مقدار اوج رواناب، هدررفت خاک و غلظت رسوب در تیمار تزریق B4 با کاهش معنیدار (01/0p <) و بهترتیب 88، 92، 95 و 35 درصدی نسبت به تیمار شاهد، 66/275 و 66/18 میلیلیتر و 49/0 گرم و 79/1 گرم بر لیتر اندازهگیری شد. نتیجهگیری: بر اساس یافتههای پژوهش حاضر، احیاء و غنیسازی پوستههای زیستی خاک در اراضی تخریبشده و بدون پوشش گیاهی از طریق تحریک و افزایش جمعیّت ریزموجودات خاکزی با استفاده از محرّکهای غذایی ریزموجودات از قبیل B4 بهعنوان راهکاری زیستی، کارا و زودبازده در حفاظت منابع خاک و آب ارزیابی شد. هرچند انجام پژوهشهای تکمیلی در راستای دستیابی به راهکارهای مطمئن با کاربرد سایر محرّکهای میکروبی و ارزیابی ماندگاری آنهای در طی بارشهای متوالی و در طول زمان ضروری میباشد. | ||
کلیدواژهها | ||
افزودنیهای خاک؛ اصلاح زیستی خاک؛ حفاظت خاک و آب؛ زیستفناوری خاک؛ ریزموجودهای خاکزی | ||
مراجع | ||
1.Awad, Y.M., Blagodatskaya, E., Ok, Y.S., and Kuzyakov, Y. 2012. Effects of polyacrylamide, biopolymer, and biochar on decomposition of soil organic matter and plant residues as determined by 14C and enzyme activities. Eur. J. Soil Biol. 48: 1-10.
2.Belnap, J., Wilcox, B.P., Van Scoyoc, M.W., and Phillips, S.L. 2013. Successional stage of biological soil crusts: an accurate indicator of ecohydrological condition. Ecohydrology. 6: 3. 474-482.
3.Benson, H.J. 2002. Microbiological applications: laboratory manual in general microbiology, (8th ed.), short version, McGraw Hill, Boston, MA, USA, 384p.
4.Blake, G.R., and Hartge, K.H. 1986. Bulk density. P 363-375, In: Klute, A. (Ed), Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA. Madison. WI.
5.Blanco, H., and Lal, R. 2008. Principles of soil conservation and management. Springer Science and Business Media, 638p.
6.Boquet, E., Boronat, A., and Ramos-Cormenzana, A. 1973. Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature. 246: 527-529.
7.Bowker, M.A., Belnap, J., Chaudhary, V.B., and Johnson, N.C. 2008. Revisiting classic water erosion models in drylands: The strong impact of biological soil crusts. Soil Biol. Biochem. 65: 158-167.
8.Cappuccino, J.G., and Sherman, N. 2007. Microbiology: a laboratory manual. Dorling Kindersley Pvt. Ltd, License of Pearson Education, New Delhi, India, Pp: 143-193.
9.Carrasco, L., Caravaca, F., Azcón, R., and Roldán, A. 2009. Soil acidity determines the effectiveness of an organic amendment and a native bacterium for increasing soil stabilisation in semiarid mine tailings. Chemosphere. 74: 2. 239-244.
10.Carter, M.R., and Gregorich, E.G. 2008. Soil sampling and methods of analysis (2th Ed.). Canadian Society of Soil Science. Ottawa: Canada. 1262p.
11.Chamizo, S., Cantón, Y., Domingo, F., and Belnap, J. 2011. Evaporative losses from soils covered by physical and different types of biological soil crusts. Hydrol. Process. 27: 3. 324-332.
12.Chamizo, S., Rodríguez-Caballero, E., Román, J.R., and Cantón, Y. 2017. Effects of biocrust on soil erosion and organic carbon losses under natural rainfall. Catena 148: 2. 117-125.
13.Colica, G., Li, H., Rossi, F., Li, D., Liu, Y., and De Philippis, R. 2014. Microbial secreted exopolysaccharides affect the hydrological behavior of induced biological soil crusts in desert sandy soils, Soil Biol. Biochem. 68: 62-70.
14.Deng, J., Orner, E.P., Chau, J.F., Anderson, E.M., Kadilak, A.L., Rubinstein, R.L., Bouchillon, G.M., Goodwin, R.A., Gage, D.J., and Shor, L.M. 2015. Synergistic effects of soil microstructure and bacterial EPS on drying rate in emulated soil micromodels. Soil Biol. Biochem. 83: 116-124.
15.Dorioz, J.M., Robert, M., and Chenu, C. 1993. The role of roots, fungi and bacteria on clay particle organization: An experimental approach. Geoderma 56: 179-194.
16.Gans, J., Woilinsky, M., and Dunbar, J. 2005. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science. 309: 1387-1390.
17.Hasti Water Technology Consulting Engineers. 2011. Watershed management studies (detailed) - Pedology and land capability of K1-1 sub-watershed of Chalusrood watershed. Nowshahr, 89p. (In Persian)
18.Huang, P.M., Bollag, J.M., and Senesi, N. 2002. Interactions between soil particles and micro-organisms: impact on the terrestrial ecosystem. John Wiley & Sons, 566p.
19.Huang, Q., Wu, H., Cai, P., Fein, J.B., and Chen, W. 2015. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles. Sci. Rep. 5: 16857.
20.Huixia, P., Zhengming, Ch., Xuemei, Zh., Shuyong, M., Xiaoling, Q., and Fang, W. 2007. A study on Oligotrophic bacteria and its ecological characteristics in an arid desert area. Sci. China. Ser. D. 50: 128-134.
21.Jacob, H., and Clarke, G. 2002. Methods of soil analysis, Part 4, Physical method. Soil Science Society of America, Inc, Madison, Wisconsin, USA.
22.Jett, B.D., Hatter, K.L., Huycke, M.M., and Gilmore, M.S. 1997. Simplified agar plate method for quantifying viable bacteria. Biotechniques. 23: 648-650.
23.Kheirfam, H., Homaee, M., Sadeghi, S.H.R., and Zarei Darki, B. 2017a. Role of biological soil crusts enrichment through bacteria inoculation and stimulation of nitrogen increasing in an erosion-prone soil. J. Water Soil. 31: 2. 545-556. (In Persian) 24.Kheirfam, H., Sadeghi, S.H.R., Homaee, M., and Zarei Darki, B. 2014. Role of soil micro-organisms in soil and water loss control. Extension and Development of Watershed Management. 2: 5. 19-26. (In Persian)
25.Kheirfam, H., Sadeghi, S.H.R., Homaee, M., and Zarei Darki, B. 2017b. Quality improvement of an erosion-prone soil through microbial enrichment. Soil Tillage Res. 165: 230-238.
26.Kheirfam, H., Sadeghi, S.H.R., Zarei Darki, B., and Homaee, M. 2017c. Controlling rainfall-induced soil loss from small experimental plots through inoculation of bacteria and cyanobacteria. Catena. 152: 40-46.
27.Kheirfam, H., Zarei Darki, B., Sadeghi, S.H.R., and Homaee, M. 2016. Identification and proliferation of soil micro-organisms in Marzanabad region with capability in applying for soil and water conservation. J. Agroecol. 6: 1. 213-226. (In Persian)
28.Kjeldahl, C. 1883. A new method for the determination of nitrogen in organic matter. Fresenius' Zeitschrift für Analytische Chemie. 22: 366.
29.Maqubela, M.P., Muchaonyerwa, P., and Mnkeni, P.N.S. 2012. Inoculation effects of two South African cyanobacteria strains on aggregate stability of a silt loam soil. Afr. J. Biotechnol. 11: 47. 10726-10735.
30.Miralles, I., Cantón, Y., and Solé-Benet, A. 2011. Two-dimensional porosity of crusted silty soils: indicators of soil quality in semiarid rangelands? Soil Sci. Soc. Am. J. 75: 1289-1301.
31.Rodríguez-Caballero, E., Cantón, Y., Chamizo, S., Lázaro, R., and Escudero, A. 2013. Soil loss and runoff in semiarid ecosystems: A complex interaction between biological soil crusts, micro-topography, and hydrological drivers. Ecosystems. 16: 4. 529-546.
32.Rossi, F., Olguın, E.J., Diels, L., and De Philippis, R. 2015. Microbial fixation of CO2 in water bodies and in drylands to combat climate change, soil loss and desertification. New Biotechnology. 32: 1. 109-120. 33.Sadeghi, S.H.R., Abdollahi, Z., and Khaledi Darvishan, A.V. 2013. Experimental comparison of some techniques for estimating natural rain drop size distribution in Caspian Sea southern coast, Iran. Hydrol. Sci. J. 58: 1374-1382.
34.Sadeghi, S.H.R., Gholami, L., Homaee, M., and Khaledi Darvishan, A.V. 2015. Reducing sediment concentration and soil loss using organic and inorganic amendments at plot scale, Solid Earth. 6: 445-455. 35.Sadeghi, S.H.R., Hazbavi, Z., and Kiani Harchegani, M. 2016. Controllability of runoff and soil loss from small plots treated by vinasse-produced biochar. Sci. Total Environ. 541: 483-490.
36.Sadeghi, S.H.R., Kheirfam, H., Homaee, M., and Zarei Darki, B. 2017a. Improvability of water infiltration in an erosion-prone soil under laboratorial conditions through artificial increasing of soil micro-organisms population. Iran. J. Soil Water Res. 47: 4. 797-805. (In Persian)
37.Sadeghi, S.H.R., Kheirfam, H., Homaee, M., Zarei Darki, B., and Vafakhah, M. 2017b. Improving runoff behavior resulting from direct inoculation of soil micro-organisms. Soil Tillage Res. 171: 35-41.
38.Sojka, R.E., Bjorneberg, D.L., Entry, J.A., Lentz, R.D., and Orts, W.J. 2007. Polyacrylamide in agriculture and environmental land management. Adv. Agron. 92: 75-162.
39.Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., and Sumner, M.E. 2001. Methods of Soil Analysis, Part 3, Chemical Methods. Soil Science Society of America and American Society of Agronomy, Madison, WI.
40.Strauss, S.L., Day, T.A., and Garcia-Pichel, F. 2012. Nitrogen cycling in desert biological soil crusts across biogeographic regions in the Southwestern United States. Biogeochemistry. 108: 171-182.
41.Tripathi, P., Beaussart, A., Andre, G., Rolain, T., Lebeer, S., Vanderleyden, J., Hols, P., and Dufrêne, Y.F. 2012. Towards a nanoscale view of lactic acid bacteria. Micron. 43: 12. 1323-1330.
42.Valencia-González, Y., Camapum, J., Torres, F. A. 2014. Influence of biomineralization on the physico-mechanical profile of a tropical soil affected by erosive processes, Soil Biol. Biochem. 74: 98-99.
43.Valencia-González, Y., Carvalho-Camapum, J.D., and Lara-Valencia, L.A. 2015. Influence of biomineralization on a profile of a tropical soil affected by erosive processes. Dyna. 82: 192. 221-229.
44.Walkley, A., and Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37: 1. 29-38.
45.Wei, W., Yu, Y., and Chen, L. 2015. Response of surface soil hydrology to the micro-pattern of bio-crust in a dry-land Loess environment, China. PLoS One. 10: 7. e0133565.
46.Woodrow, J.E., Seiber, J.N., and Miller, G.C. 2008. Acrylamide release resulting from sunlight irradiation of aqueous polyacrylamide/ iron mixtures. J. Agric. Food Chem. 56: 8. 2773-2779.
47.Zhao, Y., Qin, N., Weber, B., and Xu, M. 2014. Response of biological soil crusts to raindrop erosivity and underlying influences in the hilly Loess Plateau region, China. Biodiversity Conserv. 23: 7. 1669-1686. | ||
آمار تعداد مشاهده مقاله: 560 تعداد دریافت فایل اصل مقاله: 302 |