
تعداد نشریات | 13 |
تعداد شمارهها | 622 |
تعداد مقالات | 6,489 |
تعداد مشاهده مقاله | 8,610,029 |
تعداد دریافت فایل اصل مقاله | 8,200,553 |
اثرات محلول پاشی سدیم نیترو پروساید بر فعالیت آنزیم های آنتی اکسیدانت و عملکرد ماده موثره ماریتیغال تحت تنش خشکی | ||
پژوهشهای تولید گیاهی | ||
مقاله 7، دوره 24، شماره 4، اسفند 1396، صفحه 93-110 اصل مقاله (501.94 K) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/jopp.2017.12834.2155 | ||
نویسندگان | ||
اسماعیل زنگانی* 1؛ سعید زهتاب سلماسی2؛ بابک عندلیبی3؛ عباسعلی زمانی4 | ||
1کارشناس ارشد آزمایشگاه فیزیولوژی گیاهی و تکنولوژی بذر دانشکده کشاورزی دانشگاه زنجان | ||
2دانشگاه تبریز - دانشکده کشاورزی - گروه اکوفیزیولوژی گیاهی | ||
3عضو هیئت علمی گروه زراعت و اصلاح نباتات دانشکده کشاورزی دانشگاه زنجان | ||
4عضو هیئت علمی گروه علو محیط زیست دانشکده علوم دانشگاه زنجان | ||
چکیده | ||
سابقه و هدف: ماریتیغال گیاه دارویی است که برای تولید سیلیمارین و روغن کشت میشود. سیلیمارین ترکیبی از فلاونولیگنانهای مختلف میباشد که برای درمان بیماریهای کبدی و بسیاری از بیماریهای دیگر مورد استفاده قرار میگیرد. تنش خشکی در این گیاه ضمن کاهش عملکرد دانه، عملکرد متابولیتهای ثانویه را نیز تحت تاثیر قرار میدهد. این پژوهش به منظور بررسی اثرات سدیم نیتروپروساید بر فعالیت آنزیمهای آنتی اکسیدانت و عملکرد ماده موثره ماریتیغال در شرایط کمبود آب انجام شد. مواد و روشها: آزمایش به صورت کرتهای دو بار خرد شده در قالب طرح بلوکهای کامل تصادفی با سه تکرار در مزرعه تحقیقاتی دانشگاه زنجان در سال 1392 انجام گرفت. در این آزمایش سدیم نیتروپروساید (SNP) در سه سطح صفر، 100 و 200 میکرومول در لیتر بعنوان فاکتور اصلی، تنش خشکی در سه سطح شاهد، قطع آبیاری از مرحله ساقهروی و قطع آبیاری از مرحله گردهافشانی بعنوان فاکتور فرعی و دو ژنوتیپ ماریتیغال (مجاری و ساری) بعنوان فاکتور فرعیفرعی در نظر گرفته شدند. صفات اندازهگیری شامل فعالیت آنزیمهای کاتالاز، پراکسیداز و آسکوربات پراکسیداز، محتوای نسبی آب برگ، پایداری غشاء سلولی، درصد و عملکرد سیلیمارین و عملکرد دانه بود. یافتهها: تنش خشکی از مرحله ساقهروی محتوای نسبی آب برگ و از هر دو مرحله قطع آبیاری پایداری غشاء سلولی را کاهش داد، در صورتیکه محلولپاشی با سدیم نیترو پروساید از کاهش بیشتر محتوای نسبی آب برگ در شرایط تنش جلوگیری و پایداری غشاء سلولی را بهبود داد. قطع آبیاری از مرحله ساقهروی فعالیت آنزیم کاتالاز را در هر دو ژنوتیپ بطور معنیداری افزایش داد، در حالیکه فعالیت آنزیم پراکسیداز و آسکوربات پراکسیداز را در رقم مجاری کاهش و در اکوتیپ ساری فعالیت آسکوربات پراکسیداز را افزایش و بر فعالیت پراکسیداز تاثیری نداشت. کاربرد SNP فعالیت آنزیمهای آنتی اکسیدانت را در رقم مجاری بطور معنیداری بوِیژه در مرحله تنش ساقهروی افزایش داد، اما در اکوتیپ ساری فقط در تنش گردهافشانی سبب افزایش فعالیت آنزیم آسکوربات پراکسیداز گردید در صورتیکه در تنش ساقهروی سبب کاهش معنیدار آنزیم کاتالاز شد و تاثیری نیز بر فعالیت آنزیم پراکسیداز نداشت. با افزایش شدت تنش محتوای سیلیمارین دانه بطور معنیداری افزایش یافت، ولی تاثیری بر عملکرد سیلیمارین نداشت. کاربرد 100 میکرومولار SNP اثر افزایشی بر درصد سیلیمارین دانه داشت و نیز عملکرد سیلیمارین را در هر دو مرحله قطع آبیاری نسبت به گیاهانی که فقط تحت تیمار خشکی بودند بهبود داد. همچنین عملکرد دانه تحت تاثیر تنش بطور معنیداری کاهش پیدا نمود در حالی که این کاهش با محلولپاشی 100 میکرومولار SNP در مرحله تنش ساقهروی و گردهافشانی جبران گردید. نتیجهگیری: نتایج این تحقیق نشان داد که محلولپاشی گیاهان با SNP بویژه در سطح 100 میکرومولار با افزایش فعالیت آنزیمهای آنتی اکسیدانت و بهبود کارایی مصرف آب و تروایی غشاء سلولی از افت عملکرد دانه در شرایط کمبود آب جلوگیری و درصد و عملکرد ماده موثره ماریتیغال را افزایش میدهد. | ||
کلیدواژهها | ||
اکسید نیتریک؛ تنش آبی؛ خارمریم؛ سیلیمارین؛ گونه های فعال اکسیژن | ||
مراجع | ||
1.AbouZid, A. and Ahmed, O.M. 2013. Silymarin Flavonolignans: Structure–Activity Relationship and Biosynthesis. Studies in Natural Products Chemistry, Vol. 40.http://dx.doi.org/10.1016/B978-0-444-59603-1.00014-X. 2.Aebi, H .1984. Catalase in vitro. Methods Enzymol. 105: 121–126. 3.Arab, S., Baradaran Firouzabadi, M. and Asghari, H.R. 2016. The effect of ascorbic acid and sodium nitroprusside foliar application on photosynthetic pigments and some traits of spring safflower under water deficit stress. J. Plant Prod. 38 (4): 93-104. (In Persian) 4.Arasimowicz, M. and Floryszak-Wieczorek, J. 2007. Nitric oxide as a bioactive signaling molecule in plant stress responses. Plant Sci. 172: 876–887. 5.Bettaieb, I., Zakhama, N., Wannes, W.A., Kchouk, M.E.,and Marzouk, B. 2009. Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Sci. Hortic. Amst. 120:271–275. 6.Bradford, M.M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analy. Biochem. 72: 248-254. 7.Chance, B. and Maehly, A.C.1995. Assay of catalases and peroxidase. Methods Enzymol. 2:764-775. 8.Chaves, M.M., Maroco, J.P. and Pereira, J.S. 2003. Understanding plant responses to drought-from genes to the whole plant. Funct. Plant Biol. 30: 239-264. 9. Chen, H.X., Gao, H.Y., An, S.Z. and Li, W.J. 2004. Dissipation of excess energy in Mehlerperoxidase reaction in rumex leaves during salt shock. Photosynthetica, 42:117–122. 10.Egilla, J.N., Davies, J.R. and Boutton, T.W. 2005. Drought stress influences leaf water content, photosynthesis, and water-use efficiency of Hibiscusrosa-sinensis at three potassium concentrations. Photosynthetica. 43: 135–140. 11.Elwekeel, A., Elfishway, A. and AbouZid, S. 2012. Enhanced accumulation of flavonolignans in Silybum marianum cultured roots by methyl jasmonate. Phytochem Lett.,5: 393–396. 12.Fan, H., Li, T., Guan, L., Li, Z., Cai, Y. and Lin, Y. 2012. Effect of exogenous nitric oxide on antioxidant and DNA methylation of Dendrobium huoshanense grown under drought stress. Plant Cell Tiss Organ Cult. 109: 307-314. 13.Faroog, M., Basra, S.M.A., Wahid, A. and Rehman, H. 2009. Exogenously applied nitric oxide enhances the drought tolerance in fine grain aromatic rice. J. Agro. Crop Sci. 195: 254-261. 14.Flora, K., Hahn, M., Rosen, H. and Benner, K. 1998. Milk thistle (Silybum marianum) for the therapy of liver disease. Am. J. Gastroentero, l93: 139-143. 15.Fu, J. and Huang, B. 2001. Involvement of antioxidant and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environ Exp. Bot. 45: 105-114. 16.Gan, L., Wu, X. and Zhong, Y. 2015. Exogenously applied nitric oxide enhances the drought tolerance in hulless barley. Plant Prod. Sci. 18(1): 52-56. 17.Gapinska, M., Sklodowska, M. and Gabara, B. 2008. Effect of short- and long-term salinity on the activities of ant oxidative enzymes and lipid peroxidation in tomato roots. Acta Physiol. Planta. 30:11-18. 18.Garcia-Mata, C. and Lamattina, L. 2001. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol. 126:1196-1204. 19.Garg, B.K. 2003. Nutrient uptake and management under drought: nutrient-moisture interaction Curr. Agri. 27: 1-8. 20.Geneva, M., Zehirov, G., Stancheva, I., Iliev, L. and Georgie, V.G. 2008. Effect of soil fertilizer, folia fertilizer, and growth regulator application on milk thistle development, seed yield, and silymarin content. Com. Soil Sci. Plant Anal. 39: 17-24. 21.Ghanbari, F., Sayyari, M., Seydi, and Amirinejad, M. 2014. The effect of 5-aminolevonlinic acid on some physiological responses of coriander under drought stress. J. Plant Prod. 36(4):93-106. (In Persian). 22.Hammouda, F.M., Ismail, S.I., Hassan, N.M., Zaki, A.K. and Kamel, A. 1993. Evaluation of the Silymarin content in Silybum marianum Gaertn. cultivated under different agriculture conditions.hytoth. Res. 7: 90-91. 23.Hendawy, S.F., Hussein, M.S., Youssef, A.A. and EL-Mergawi, R.A. 2013. Respnse of Silybum marianum plant to irrigation intervals combined with fertilization. Nusantara Bio,5:22-29. 24.Kavita, S., Ritambhara, G.K., Shalini, V. and Dubey, R.S. 2001. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci. 161(6):1135-1144. 25.Keshavarz Afshar, R., Chaichi, M.R., Assareh, M.H., Hashemi, M. and Liaghat, A. 2014.Interactive effect of deficit irrigation and soil organic amendments on seed yield and flavonolignan production of milk thistle. Ind. Crops Prod. 58: 166-172. 26.Keshavarz Afshar, R., Hashemi, M., DaCosta, M., Spargo, J. and Sadeghpour, A. 2016. Biochar application and drought stress effect on physiological characteristics of Silybum marianum. Com Soil Sci. Plant Anal. 47(6): 743-752. 27.Keshavarz Afshar, R., Chaichi, M.R., Ansari, M., Jahanzad, E. and Hashemi, M. 2015. Accumulation of silymarin in milk thistle seeds under drought stress. Planta. 242: 539-543. 28.Khazaei, Z., Sayyari, M. and Seydi, M. 2014. Effect of 5-aminolevonlinic acid on changes water deficit stress tolerance index and catalase activity of sweet pepper seedlings. J Plant Prod. 37(4): 79-92. (In Persian) 29.Kvasnicka, F., Biba, B., Sevick, R., Voldrich, M. and Kratka, J. 2003. Analysis of the active components of silymarin. J. Chrom. A. 990, 239-245. 30.Lamattina, L., Garcia-Mata, C., Graziano, M. and Pagnussat, G. 2003. Nitrix oxide: The versatility of on extensive signal molecule. Ann. Rev. Plant Biol. 54:109-136. 31.Leshem, Y.Y. and Haramaty, E. 1996. The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum L. foliage. J.Plant Physiol. 148: 258-263. 32.Liu, S., Dong, Y. and Xu, L. 2014. Effects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of catton seedlings. Plant Growth Reg. 73: 67-78. 33.Misra, A.N., Misra, M. and Singh, R. 2011. Nitric oxide ameliorates stress responses in plants. Plant Soil Environ. 57(3): 95-100. 34.Morazzoni, P. and Bombard, E. 1995. Silybum marianum. Fitoterapia, 66: 3-42. 35.Moussavi, S.M., Salari, M. and Mobasser, H.R. 2011. The effect of different irrigation intervals and mineral nutrition on seed yield of ajowan (Trachysper mumammi). Ann. Biol. Res. 2(6): 692-698. 36.Nakano, Y. and Asada, K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast. Plant Cell Physiol. 22: 867-880. 37.Nasibi, F. 2011. Effect of different concentrations of sodium nitroprusside (SNP) pretreatment on oxidative damages induced by drought stress in tomato plant. J. Plant. Biol. 9 (3): 74-63. (In Persian). 38.Neill, S., Barros, R., Bright, J., Desikan, R., Hancock, J., Harrison, J., Morris, P., Rieeiro, D. and Wilson, I. 2008. Nitic oxide, stomatal closure and abiotic stress. J. Exp. Bot. 59:165-176. 39.Reddy, A.R., Chaitanya, K.V. and Vivekanandan, M. 2004. Drought-induced responses of photosynthesis andantioxidant metabolism in higher plants. J. Plant Physiol. 161:1189-1202. 40.Sairam, R.K., Deshmukh, PS. and Shukla, D.S. 1997. Tolerance to drought and temperature stress is relation to increased antioxidant enzyme activity in wheat. J. Agro. Crop. Sci.178:171-177. 41.Sarath, G., Bethke, P.C., Jones, J., Baird, L.M., Hou, G. and Mitchell, R.B. 2006. Nitric oxide accelerates seed germination in warm-season grasses. Planta. 223: 1154–1164. 42.Selmar, D. 2008. Potential of salt and drought stress to increase pharmaceutical significant secondary compounds in plants. Agron. Forest Res. 58: 139-144. 43.Selmar, D. and Kleinwächter, M. 2013. Influencing the product quality by deliberately applying drought stress during the cultivation of medicinal plants. Ind. Crop. Prod. 42: 558-566. 44.Sharma, P. and Dubey, R.S. 2005. Drought induces oxidative stress and enhances the activitiesof antioxidant enzymes in growing rice seedlings. Plant Growth Reg. 46: 209-221. 45.Shi, Q., Ding, F., Wang, X. and Wei, M. 2007. Exogenous nitric oxide protect cucumber root against oxidative stress induced by salt stress. Plant. Physiol. Biochem. 45: 542-550. 46.Siddiqui, M., Al-Whaibi, M. and Basalah, M. 2010. Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma. doi 10.1007/s00709-010-0206-9. 47.Simpson, G.G. 2005. No flowering. Bioess. 27: 239-241. 48.Stoiljkovic, Z., Petrovic, S.D. and Ilic, B.S. 2007. Examination of localization of silymarin and fatty oil in Silybum marianum (L.) Gaertn. Fruit. CI CEQ. 13(2): 55-59. 49.Tan, J., Zhao, H., Hong, J., Han, Y. and Zhao, W. 2008. Effects of exogenous nitric oxide on photosynthesis, antioxidant capacity and proline accumulation in wheat seedlings subjected to osmotic stress. World J. Agri. Sci. 4(3): 307-313. 50.Tian, X. and Lei, Y. 2006. Nitric oxide treatment alleviates drought stress in wheat seedlings.Bio. Plantarum. 50: 775-778. 51.Turtola, S., Manninen, A., Rikala, R. and Kainulainen, P. 2003. Drought stress alters the concentration of wood terpenoids in scots pine and Norway spruce seedling. J. Chem. Ecol.29: 1981-1995. 52.Xiong, J., Zhang, L., Fu, G., Yang, Y., Zhu, C. and Tao, L. 2012. Drought-induced proline accumulation is uninvolved with increased nitric oxide, which alleviates drought stress by decreasing transpiration in rice. J. Plant. Res. 125: 155-164. | ||
آمار تعداد مشاهده مقاله: 1,471 تعداد دریافت فایل اصل مقاله: 1,232 |