
تعداد نشریات | 13 |
تعداد شمارهها | 623 |
تعداد مقالات | 6,501 |
تعداد مشاهده مقاله | 8,620,819 |
تعداد دریافت فایل اصل مقاله | 8,210,962 |
اثرتنش کم آبی و قارچ های میکوریزی Rhizophagus intraradices و Funneliformis mosseae برخصوصیات رشدی و جذب برخی عناصر در عدس | ||
مجله مدیریت خاک و تولید پایدار | ||
مقاله 3، دوره 7، شماره 3، آذر 1396، صفحه 37-53 اصل مقاله (473.88 K) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/ejsms.2017.10626.1627 | ||
نویسندگان | ||
حسینعلی علیخانی* 1؛ بهرام ابوالفضلی بهروز2؛ فرهاد رجالی3 | ||
1استاد گروه مهندسی علوم خاک دانشگاه تهران | ||
2دانشجوی کارشناسی ارشد دانشگاه تهران | ||
3هیئت علمی موسسه تحقیقات آب و خاک کشور | ||
چکیده | ||
سابقه و هدف: کمبود آب یکی از عوامل محدودکنندهی تولید محصولات کشاورزی در مناطق خشک و نیمه خشک است. در سالهای اخیر ریزسازوارههای مفید بهعنوان یکی از راهکارهای کاهش اثرات تنش خشکی و افزایش تولید محصول در کشاورزی پایدار ارزیابیشدهاند. بنابراین این پژوهش با هدف ارزیابی تأثیر قارچهای میکوریزی بر رشد و جذب برخی عناصر گیاه عدس (رقم بیله سوار) تحت تنش شرایط کمآبی انجام گرفت. مواد و روشها: آزمایشی در آرایش فاکتوریل بهصورت طرح کامل تصادفی شامل دو فاکتور، تنش رطوبتی در چهار سطح (20%، 40%، 60% و 80% رطوبت قابل دسترس) و فاکتور دوم نوع قارچ میکوریزی در چهار سطح Rhizophagus intraradices و Funneliformis mosseae، مخلوط دو گونه و شاهد در اتاقکهای رشد در گروه علوم و مهندسی خاک دانشگاه تهران طراحی و در سال 1393 انجام گرفت. پس از طی دورهی رشد، صفات رشدی شامل مادهی خشک شاخساره، وزن خشک ریشه، تعداد غلاف، کلروفیل برگ، کلنیزاسیون ریشه، ارتفاع گیاه و عناصر N, P, K, Fe, Zn در شاخساره اندازهگیری شد. و تجزیه تحلیل آماری دادهها با نرمافزارSAS و مقایسهی میانگین دادهها با آزمون چند دامنهای دانکن در سطح پنج درصد انجام گرفت. یافتهها : نتایج نشان داد در اثر تنش کم آبی تمام صفات گیاهی اندازهگیری شده کاهش یافت به طوری که مادهی خشک شاخساره، وزن خشک ریشه، تعداد غلاف، شاخص کلروفیل برگ، کلنیزاسیون ریشه و ارتفاع گیاه در بالاترین سطح تنشS1 نسبت به شاهد NS به ترتیب 99/49، 12/41، 2/11، 4/24، 06/26، 09/28 و 15/22 درصد کاهش یافتند. همچنین اثر متقابل تنش کم آبی و گونهی قارچ میکوریز بر تمام صفات اندازه گیری شده بجز ارتفاع بوته، وزن خشک ریشه، عدد کلروفیل، روی، فسفر و پتاسیم در سطح پنجدرصد معنی دار بود. تمام صفات اندازهگیری شده در گیاهان تلقیح شده با قارچ میکوریزی با گیاهان غیر میکوریزی بالاتربود. بیشترین تعداد غلاف، وزن خشک شاخساره و آهن در تیمار M1NS بدست آمد که به ترتیب نسبت به شاهد 51، 07/36، 48/79 درصد بیشتر بود. بیشترین میزان کلنیزاسیون ریشه در تیمار S3M2 به میزان 3/87 درصد و کمترین مقدار در تیمار S1NM به میزان 25/8 درصد به دست آمد. همچنین قارچهای میکوریزی R. intraradices، F. mosseae و مخلوط دو گونه محتوای آهن در شاخساره رابه ترتیب 2/89 ،0/45، 7/33 درصد نسبت به شاهد افزایش دادند. نتیجهگیری:تنش کم آبی تاثیر منفی برتمام شاخص های رشد داشت اما بیشترین کاهش در وزن خشک ریشه و شاخساره دید شد. کاربرد قارچ های میکوریز تأثیر معنیداری بر صفات رشدی و جذب عناصر داشت. استفاده از قارچ های میکوریزی R. intraradices و F. mosseae اثرات منفی تنش کمآبی را کاهش داد و افزایش رشد و جذب بیشتر عناصر را به دنبال داشت. | ||
کلیدواژهها | ||
لمات کلیدی: خشکسالی؛ وزن خشک شاخساره؛ کلنیزاسیون ریشه؛ آهن؛ تعداد غلاف | ||
مراجع | ||
1.Alarcon, A., Davies, F.T.Jr, Egilla, J.N., Fox, T.C., Estrada-Luna, A.A., and Ferrera-Cerrato, R. 2002. Short term effects of Glomus claroideum and Azospirillum brasilense on growth and root acid phosphatase activity of Carica papaya L. under phosphorus stress. Microbiologia. 44: 31-37. 2.Al-Karaki, G., McMichael, B., and Zak, J. 2004. Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza. 14: 4. 263-269. 3.Ames, R.N., Reid, C.P.P., Porter, L.K., and Cambardella, C. 1983. N-15 uptake and transport by hyphae of a vesicular-arbuscular mycorrhizal fungus. Phytopathology. 73: 840-841. 4.Amiri, M.J., and Eslamian, S.S. 2010. Investigation of climate change in Iran. J. Environ. Sci. Technol. 3: 4. 208-216. 5.Angadi, S.V., and Entz, M.H. 2002. Water Relations of standard height and dwarf sunflower cultivars. Crop Sci. 42. 152-159. 6.Apel, K., and Hirt, H. 2004. Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annual Review of Plant Biology. 55: 373-399. 7.Asgarzadeh, H., Mosaddeghi, M.R., Mahboubi, A.A., Nosrati, A., and Dexter, A.R. 2010. Soil water availability for plants as quantified by conventional available water, least limiting water range and integral water capacity. Plant and soil. 335: 1-2. 229-244. 8.Augé, R.M. 2004. Arbuscular mycorrhizae and soil/plant water relations. Can. J. Soil Sci. 84: 4. 373-381. 9.Augé, R.M., Toler, H.D., Moore, J.L., Cho, K., and Saxton, A.M. 2007. Comparing contributions of soil versus root colonization to variations in stomatal behavior and soil drying in mycorrhizal Sorghum bicolor and Cucurbita pepo. J. Plant Physiol. 164: 10. 1289-1299. 10.Balsam, M., Qaddoury, A., and Goicoechea, N. 2014. Role of native and exotic mycorrhizal symbiosis to develop morphological, physiological and biochemical responses coping with water droughtof date palm, Phoenix dactylifera. Trees. 28: 161-172. 11.Bárzana, G., Aroca, R., Bienert, G.P., Chaumont, F., and Ruiz-Lozano, J.M. 2014. New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance. Molecular Plant-Microbe Interactions. 27: 4. 349-363. 12.Boby, V.U., Balakrishna, A.N., and Bagyaraj, D.J. 2008. Interaction between Glomus mosseae and soil yeasts on growth and nutrition of cowpea. Microbiol Res. 163: 693-700. 13.Bremner, J.M., and Mulvaney, C.S. 1982. Nitrogen-Total, P 595-624. In: Page, A.L. et al. (eds.), Methods of Soil Analysis. Agronomy Monograph 9, Part 2, 2nd Ed. American Society of Agronomy, Madison. WI. 14.Centeno, C., Viveros, A., Brenes, A., Canales, R., Lozano A., and Cuadra, C.D. 2001. Effect of several germination conditions on total P, phytate P, phytase and acid phosphatase activities and inositol phosphate esters in rye and barley. J. Agric. Food Chem. 49: 3208-3214. 15.Clark, R.B., and Zeto, S.K. 2000. Mineral acquisition by arbuscular mycorrhizal plants. J. Plant Nutr. 23:867–902 16.Cottenie, A. 1980. Soil and plant testing as a basis of fertilizer recommendations. FAO Soils Bull 38/2 FAO, Rome. 17.Cress, W.A., Johnson, G.V., and Barton, L.L. 1986. The role of endomycorrhizal fungi in iron uptake by Hilaria jamesii. J. Plant Nutr. 9: 3-7. 547-55. 18.Dalpé, Y. 1993. Vesicular-arbuscular mycorrhiza. In: Carter MR (Eds) Soil sampling and methods of analysis. Lewis Publishers, Boca Raton, 287p. 19.Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., and Basra, S.M.A. 2009. Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development. 29: 185-212. 20.Fentahun, M., Akhtar, M.S., Muleta, D., and Lemessa, F. 2013. Isolation and characterization of nitrogen deficit Rhizobium isolates and their effect on growth of haricot bean. Afric. J. Agric. 8: 46. 5942-5952. 21.Franzini, V., Azcón, R., Mendes, F.L., and Aroca, R. 2010. Interactions between Glomus species and Rhizobium strains affect the nutritional physiology of drought-stressed legume hosts. J. Plant Physiol. 67: 614-619. 22.Gholamhoseini, M., Ghalavand, A., Dolatabadian, A., Jamshidi, E., and Khodaei-Joghan, A. 2013 .Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agricultural water management. 117: 106-114. 23.Gong, M., Tang, M., Chen, H., Zhang, Q., and Feng, X. 2013. Effects of two Glomus species on the growth and physiological performance of Sophora davidii seedlings under water stress. New Forests, 44: 3. 399-408. 24.Gupta, M.L., Prasad, A., Ram, M., and Kumar, S. 2002. Effect of the vesiculararbuscula mycorrhizal (VAM) fungus Glomus fasiculatum on the essential oil yield related characters and nutrient acquisition in the crops of different cultivars of menthol mint (Mentha arvensis) under field conditions. Bioresour. Technology. 81: 77-79. 25.Hacisalihoglu, G., and Kochian L.V. 2003. How do some plants tolerate low levels of soil zinc? Mechanisms of zinc efficiency in crop plants New Phytologist. 159: 341-350. 26.Heidari, and Carmi. 2013. Effect of drought stress and strains of mycorrhiza on yield and grain, sunflower chlorophyll and biochemical compounds. J. Environ. Stress Farm Sci. 6: 1. 17-26. (In Farsi) 27.Hojjat, S.S. 2011. Effects of seed size on germination and seedling growth of some Lentil genotypes (Lens culinaris Medik.). Inter. J. Agric. Crop Sci. 3: 1-5. 28.Hoque, M.A., Okuma, E., Banu, M.N.A., Nakamura, Y., Shimoishi, Y., and Murata, Y. 2007. Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. J. Plant Physiol. 164: 5. 553-561. 29.Huang, Z., Zou, Z., He, C., He, Z., Zhang, Z., and Li, J. 2011. Physiological and photosynthetic responses of melon (Cucumis melo L.) seedlings to three Glomus species under water deficit. Plant and soil. 339: 1-2. 391-399. 30.Johansen, A. 1993. Hyphal transport by a vesicular-arbuscular mycorrhizal fungus of N applied to the soil as ammonium or nitrate. Biology and Fertility of Soils. 16: 66-70. 31.Kiani, S.P., Maury, P., Sarrafi, A., and Grieu, P. 2008. QTL analysis of chlorophyll fluorescence parameters in sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions.Plant Sci. 175: 565-573. 32.Knudsen, D., Peterson, G.A., and Pratt, P.F. 1982. Lithium, sodium, potassium, P 225-246. In: Page, A.L. (ed.), Methods of soil analysis, Part 2, Madison, WISC. ASA-SSSA. 33.Labidi, S., Jeddi, F.B., Tisserant, B., Yousfi, M., Sanaa, M., Dalpé, Y., and Sahraoui, A.L.H. 2015. Field application of mycorrhizal bio-inoculants affects the mineral uptake of a forage legume (Hedysarum coronarium L.) on a highly calcareous soil. Mycorrhiza. 25: 4. 297-309. 34.Ladjal, M., Huc, R., and Ducrey, M. 2005. Drought effects on hydraulic conductivity and xylem vulnerability to embolism in diverse species and provenances of Mediterranean cedars. Tree Physiology. 25: 1109-1117. 35.Li, X.L., Marschner, H., and George, E. 1991. Acquisition of phosphorus and copper by VA–mycorrhizal hyphae and root-to-shoot transport in white clover. Plant and Soil, 136: 49-57. 36.Michalis, O., Ioannides, I.M., and Ehaliotis, C. 2013. Mycorrhizal inoculation affects arbuscular mycorrhizal diversity in watermelon roots but leads to improved colonization and plant response under water stress only. Appl. Soil Ecology. 63p. 37.Miransari, M., Abrishamchi, A., Khoshbakht, K., and Niknam, V. 2014. Plant hormones assignals in arbuscular mycorrhizal symbiosis. Crit. Rev. Biotechnol. 34: 123-133. 38.Phillips, J.M., and Hayman, D.S. 1970. Improved procedures clearing roots and staining parasitic and vesicular mycorrhizal fungi for rapid assessment of infection. Transaction of British Mycological Society, 55: 158-161. Physiol. 164: 1289-1299. 39.Redecker, D., Schüßler, H., Stockinger, S., Stürmer, J., Morton, and Walker, C. 2013. An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza doi: 10.1007/s00572-013-0486-y. 40.Rejali, F. 2001. Preparation of arbuscular mycorrhiza fungi inoculation by invitro method and investigation the effect of its on nutrients uptake in wheat plant with drought stress. Ph.D. Thesis. University of Tarbiat Modares, Tehran. 220p. (In Persian) 41.Rivand, M. 2002. In agriculture bean Publications emission of mashahir, 240p. 42.Rodriguez-Celma, J., Lin, W.D., Fu, G.M., Abadia, J., Lopez-Millan, A.F., and Schmidt, W. 2013. Mutually exclusive alterations in secondary metabolism are critical for the uptake of insoluble iron compounds by Arabidopsis and Medicago truncatula. Plant Physiology. 162: 1473-1485. 43.Ryan, J., Estefan, G., and Rashid, A. 2007. Soil and plant analysis laboratory manual. ICARDA. 44.Sadolah, A.A., and Ismail, F. 2015. The effect of three species of mycorrhizal fungi on the growth, colonization rate and root phosphorus concentration African Marigold (Targets' erecta) J. Soil Water Tabriz Univ. 24: 4. 129-138. (In Farsi) 45.Saraswathi, S.G., and Paliwal, K. 2011. Drought induced changes in growth, leaf gas exchange and biomass production in Albizia lebbeck and Cassia siamea seedlings. J. Environ. Biol. 32: 2. 46.Sharda Waman, M.K., and Bernard Felinov, R. 2009. Studies on effects of arbuscular mycorrhizal (Am) fungi on mineral nutrition of Carica papaya L. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 37: 183-186. 47.Sharma, A.K., Srivastava, P.C., and Johri, B.N. 1994. Contribution of VA mycorrhiza to zinc uptake in plants. Biochemistry of Metal Micronutrients in the Rhizosphere. Lewis Publishers, Boca Raton, FL, Pp: 111-124. 48.Sheng-Li, G., Ting-Hui, D., and Ming-De, H. 2008. Phosphorus changes and sorption characteristics in a calcareous soil under long-term fertilization. Pedosphere 18: 248-256 49.Smith, S.E., and Read, D.J. 2008. Mycorrhizal Symbiosis, third ed. Academic Press, London, UK. 50.Subramanian, K.S., Tenshia, V., Jayalakhshmi, K., and Ramachandran, V. 2009. Role of arbuscular mycorrhizal fungus (Glomus intraradices) - (fungus aided) in zinc nutrition of (in) maize. J. Agric. Biotechnol. Sust. Dev. 1: 029-038. 51.Subramanian, K.S., Santhanakrishnan, P., and Balasubramanian, P. 2006. Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Scientia horticulturae, 107: 3. 245-253. 52.Subramanian, K.S., Tenshia, J.V., Jayalakshmi, K., and Ramachandran, V. 2011. Antioxidant enzyme activities in arbuscular mycorrhizal (Glomus intraradices) fungus inoculated and non-inoculated maize plants under zinc deficiency. Ind. J. Microbiol. 51: 1. 37-43. 53.Suri, V.K., Choudhary, A.K., Girish, C., Verma, T.S., Gupta, M.K., and Dutt, N. 2011. Improving phosphorus use through co-inoculation of vesicular arbuscular mycorrhizal fungi and phosphate solubilizing bacteria in maize in an acidic Alfisol. Communicationsin Soil Science and Plant Analysis 42: 18. 2265-2273. 54.Tennant, D. 1975. A test of a modified line intersect method of estimating root length. J. Ecol. 63: 995-1001. 55.Vafadar, F., Amooaghaie, R., and Otroshy, M. 2014. Effects of plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungus on plant growth, stevioside, NPK and chlorophyll content of Stevia rebaudiana. J. Plant Interact. 9: 1. 128-136. 56.Wang, M., Christie, P., Xiao, Z., Qin, C., Wang, P., Liu, J., Xie, Y., and Xia, R. 2008. Arbuscular mycorrhizal enhancement of iron concentration by Poncirus trifoliata L. Raf and Citrus reticulata Blanco grown on sand medium under different pH. Biology and Fertility of Soils. 45: 65-72. 57.Whitmore, A.P., and Whalley, W.R. 2009. Physical effects of soil drying on roots and crop growth. J. Exp. Bot. 6: 10. 2845-2857. 58.Wu, Q.S. 2011. Mycorrhizal efficacy of trifoliate orange seedlings on alleviating temperature stress. Plant Soil Environ. 10: 459-464. 59.Wu, Q.S., and Xia, R.X. 2006. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J. Plant Physiol. 163: 4. 417-425. 60.Wu, Q.S., and Zou, Y.N. 2009. Mycorrhiza has a direct effect on reactive oxygen metabolism of drought-stressed citrus. Plant Soil Environ. 55: 10. 436-442. 61.Wu, Q.S., Xia, R.X., Zou, Y.N., and Wang, G.Y. 2007. Osmotic solute responses of mycorrhizal citrus (Poncirus trifoliata) seedlings to drought stress. Acta Physiologiae Plantarum. 29: 6. 543-549. 62.Wu, Q.S., Zou, Y.N., Xia, R.X., and Wang, M.Y. 2007. Five Glomus species affect water relations of Citrus tangerine during drought stress Botanical Studies, 48: 2. 147-154. 63.Yaseen, T., Burni, T., and Hussain, F. 2013. Effect of arbuscular mycorrhizal inoculation on nutrient uptake, growth and productivity of cowpea (Vigna unguiculata) varieties. Afric. J. Biotechnol. 10: 43. 8593-8598. 64.Zuo, Y., Ren, L., Zhang, F., and Jiang, R.F. 2007. Bicarbonate concentration as affected by soil water content controls iron nutrition of peanut plants in a calcareous soil. Plant Physiol Biochem. 45: 357-364. | ||
آمار تعداد مشاهده مقاله: 1,207 تعداد دریافت فایل اصل مقاله: 523 |