
تعداد نشریات | 13 |
تعداد شمارهها | 622 |
تعداد مقالات | 6,489 |
تعداد مشاهده مقاله | 8,610,875 |
تعداد دریافت فایل اصل مقاله | 8,200,757 |
مقایسه زیتوده ریزریشه، جمعیت کرمهای خاکی و نماتدهای خاکزی در خاک سطحی تودههای طبیعی و دستکاشت جنگلی | ||
مجله پژوهشهای حفاظت آب و خاک | ||
مقاله 13، دوره 24، شماره 3، مرداد 1396، صفحه 219-234 اصل مقاله (403.23 K) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/jwfst.2017.12386.2698 | ||
نویسندگان | ||
راضیه سنجی؛ یحیی کوچ* ؛ مسعود طبری کوچکسرایی | ||
دانشگاه تربیت مدرس | ||
چکیده | ||
سابقه و هدف: به دلیل تخریب و کاهش سطح جنگلها، جنگلکاری یک مساًله ضروری در حال و آینده بوده و ارزیابی جنگلکاری-های انجام شده، نقش مهمی در ایجاد جنگلهایی با کیفیت و کمیت بهتر خواهد داشت. خاک بخش مهمی از اکوسیستم جنگل به حساب میآید که تحت شرایط عرصهای یکسان، گونههای مختلف درختی با تفاوت در زیتوده روزمینی و زیرزمینی، اثرات مختلفی بر ویژگیهای آن دارند. مطالعه و شناخت مشخصههای زیستی، شاخصهای مناسب برای ارزیابی کیفیت و سلامت خاک به شمار می-روند. در پژوهش حاضر، اثر پوششهای جنگلی طبیعی، جنگلکاریهای پهنبرگ و سوزنیبرگ، بر تغییرپذیری زیتوده ریزریشهها، تعداد و زیتوده گروههای اکولوژیک کرمخاکی و فراوانی نماتدهای خاکزی مورد توجه قرار گرفته است. مواد و روشها: در هریک از پوششهای جنگلی مورد نظر شامل توده طبیعی ممرز- انجیلی و جنگلکاریهای پهنبرگ زبانگنجشک، افراپلت و سوزنیبرگ کاج بروسیا و زربین، مستقر در حوزه چوب و کاغذ مازندران، تعداد 16 نمونه خاک از عمق 15-0 سانتیمتری (خاک سطحی) برداشت شد. محتوی رطوبت، pH، کربنآلی، نیتروژن کل و مشخصههای زیستی خاک (زیتوده ریزریشه، تعداد و زیتوده کرمهای خاکی و فراوانی نماتدهای خاکزی) در آزمایشگاه مورد سنجش و اندازهگیری قرار گرفت. یافتهها: تجزیه واریانس مقادیر مشخصههای فیزیکی و شیمیایی خاک حاکی از وجود تفاوتهای آماری معنیدار در ارتباط با پوششهای جنگلی مختلف میباشد. بیشترین مقادیر مشخصههای رطوبت، کربن و نسبت کربن به نیتروژن خاک به جنگلکاری کاج بروسیا اختصاص داشته، در حالی که بالاترین مقادیر مشخصههای pH و نیتروژن در خاک تحت توده طبیعی ممرز- انجیلی مشاهده شد. مقادیر حداکثر زیتوده ریزریشهها (68/89 گرم بر مترمربع)، تعداد کرمهای خاکی (81/1 تعداد بر مترمربع) و زیتوده کرمهای خاکی (17/24 میلیگرم بر مترمربع) به توده طبیعی ممرز- انجیلی تعلق داشت. همچنین، بالاترین تعداد (43/1 تعداد بر مترمربع) و زیتوده (25/19 میلیگرم بر مترمربع) گروه اکولوژیک اپیژئیک، در توده طبیعی ممرز- انجیلی و جنگلکاری زبانگنجشک مشاهده شد. در بین تودههای جنگلی مورد بررسی، توده طبیعی ممرز- انجیلی بیشترین تعداد (37/0 تعداد بر مترمربع) و زیتوده (92/4 میلیگرم بر مترمربع) گروه اکولوژیک آنسئیک کرمهای خاکی را به خود اختصاص داد. گروه اکولوژیک اندوژئیک در هیچ یک از تودههای مورد بررسی یافت نشد. حداکثر تعداد نماتدهای خاکزی (37/603 تعداد بر متر مربع) در خاک توده طبیعی ممرز- انجیلی مشاهده شد. نتایج همبستگی حاکی از آن است که محتوی رطوبت و مشخصههای شیمیایی خاک اثر قابل توجهی بر تغییرپذیری هر یک از مشخصههای زیستی در سطح تیپهای پوششی مختلف دارند. نتیجهگیری: نتایج این پژوهش مؤید اثر قابل توجه پوششهای جنگلی طبیعی بر مشخصههای زیستی و کیفیت خاک میباشد. همچنین در مناطق جنگلی تخریبیافته شمال کشور، استقرار گونه درختی زبانگنجشک میتواند به عنوان گونه منتخب جهت بهبود شاخصهای زیستی، حفظ کیفیت و سلامت خاک مدنظر قرار گیرد. | ||
کلیدواژهها | ||
جنگل طبیعی؛ جنگل دستکاشت؛ خصوصیات شیمیایی خاک؛ کرم خاکی؛ نماتد | ||
مراجع | ||
1.Ahmadi Malakut, E., Soltani, A., and Hasanzad Navrodi, I. 2011. A comparison between understory phytodiversity of a natural forest and forest plantations (Case study: Langerud – Guilan). Iran. J. For. 20: 2. 157-167. (In Persian) 2.Angst, S., Mueller, C.W., Cajtham, T., Angst, G., Lhotáková, Z., Bartuška, M., Špaldoňová, A., and Frouz, J. 2017. Stabilization of soil organic matter by earthworms is connected with physical protection rather than with chemical changes of organic matter. Geoderma. 289: 4. 29-35. 3.Ansari, N., and Seiyed Akhlaghi, S.J. 2009. Comparison of the opinion of rangeland user and expert about factors influencing natural resources degradation in Iran. Rangeland. 3: 3. 519-532. (In Persian) 4.Asshoff, R., Scheu, S., and Eisenhauer, N. 2010. Different earthworm ecological group interactively impact seedling establishment. Europ. J. Soil Biol. 46: 5. 330-334. 5.Augusto, L., De Schrijver, A., Vesterdal, L., Smolander, A., Prescott, C., and Ranger, J. 2015. Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests. Biological Reviews. 90: 3. 444-466. 6.Beyranvand, M., and Kooch, Y. 2016. Effect of broadleaf tree species on abundance and diversity of earthworms in forest ecosystems plain. J. Soil Biol. 4: 1. 15-26. (In Persian) 7.Bjørnlund, L., and Christensen, S. 2005. How does litter quality and site heterogeneity interact on decomposer food webs of a semi-natural forest? Soil Biology and Biochemistry. 37: 2. 203-213. 8.Blouina, M., Hodsonb, M.E., Delgadoc, E.A., Bakerd, G., Brussaarde, L., Buttf, K.R., Daig, J., Dendoovenh, L., Peresi, G., Tondohj, J.E., Cluzeauk, D., and Brunl, J. 2013. A review of earthworm impact on soil function and ecosystem services. Europ. J. Soil Sci. 64: 1. 161-182. 9.Brassard, B.W., Chen, H.Y., Bergeron, Y., and Paré, D. 2011. Coarse root biomass allometric equations for Abies balsamea, Picea mariana, Pinus banksiana and Populus tremuloides in the boreal forest of Ontario, Canada. Biomass and Bioenergy. 35: 10. 4189-4196. 10.Cardinale, B.J., Wright, J.P., Cadotte, M.W., Carroll, I.T., Hector, A., Srivastava, D.S., and Weis, J.J. 2007. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proceedings of the National Academy of Sciences. 104: 46. 18123-18128. 11.Cesarz, S., Ruess, L., Jacob, M., Jacob, A., Schaefer, M., and Scheu, S. 2013. Tree species diversity versus tree species identity: driving forces in structuring forest food webs as indicated by soil nematodes. Soil Biology and Biochemistry. 62: 2. 36-45. 12.Chen, H., Li, B., Fang, C., Chen, J., and Wu, J. 2007. Exotic plant influences soil nematode communities through litter input. Soil Biology and Biochemistry. 39: 7. 1782-1793. 13.Cristhy Buch, A., Gardner Brown, G., Fernandes Correia, M.E., Fábio Lourençato, L., and Vieira Silva-Filho, E. 2017. Ecotoxicology of mercury in tropical forest soils: Impact on earthworms. Science of the Total Environment, In Press. 14.Eissenstat, D.M., Wells, C.E., Yanai, R.D., and Whitbeck, J.L. 2000. Building roots in a changing environment: implications for root longevity. New Phytologist. 147: 1. 33-42. 15.Fan, S., Guan, F., Xu, X., Forrester, D.I., Ma, W., and Tang, X. 2016. Ecosystem carbon stock loss after land use change in subtropical forests in China. Forests. 7: 7. 142; doi: 10.3390/f7070142. 16.Franco, A., Knox, M.A., Sandriuzzi, W., De Tomasel, C.M., Sala, O.E., and Wall, D.H. 2017. Nematode exclusion and recovery in experimental soil microcosms. Soil Biology and Biochemistry. 108: 4. 78-83.17.Frouz, J., Livečková, M., Albrechtová, J., Chroňáková, A., Cajthaml, T., Pižl, V., andCepáková, Š. 2013. Is the effect of trees on soil properties mediated by soil fauna? A case study from post-mining sites. Forest Ecology and Management. 309: 4. 87-95. 18.Fukuzawa, K., Shibata Takagi, K., Satoh, F., Koike, T., and Sasa, K. 2013. Temporal variation in fine-root biomass، production and mortality in a cool temperate forest covered with dense understory vegetation in northern Japan. Forest Ecology and Management. 310: 4. 700-710. 19.Gorobtsova, O.N., Gedgafova, F.V., Uligova, T.S., and Tembotov, R.K. 2016. Eco physiological indicators of microbial biomass status in chernozem soils of the Central Caucasus (in the territory of Kabardino-Balkaria with the Terek variant of altitudinal zonation). Russ. J. Ecol. 47: 4. 19-25. 20.Groffman, P.M., Fahey, T.J., Fisk, M.C., Yavitt, J.B., Sherman, R.E., Bohlen, P.J., and Maerz, J.C. 2015. Earthworms increase soil microbial biomass carrying capacity and nitrogen retention in northern hardwood forests, Soil Biology and Biochemistry, 87: 2. 51-58. 21.Guei, A.M., Baidai, Y., Tondoh, J.E., and Huising, J. 2012. Functional attributes:compacting vs. decomposing earthworms and influence on soil structure. Current Zoology. 58: 2. 556-565. 22.Haghparast, T., and Khakzyan, M.R. 1994. Arable soils. Islamic Azad University of Rasht Publication, 341p. (In Persian) 23.Hashemi, S.F., Hojjati, S.M., Hosseini Nasr, S.M., and Jalilvand, H. 2012. Comparison of nutrient elements and elements retranslocation of Acer velutinum, Zelkova carpinifolia and Pinus brutia in Darabkla-Mazindaran. Iran. J. For. 4: 2. 175-185. (In Persian) 24.Helmisaari, H.S., Saarsalmi, A., and Kukkola, M. 2009. Effects of wood ash and nitrogen fertilization on fine root biomass and soil and foliage nutrients in a Norway spruce stand in Finland. Plant and Soil. 314: 1-2. 121-132. 25.Holdsworth, A.R., Frelich, L.E., and Reich, P.B. 2012. Leaf litter disappearance in earthworm-invaded northern hardwood forests: role of tree species and the chemistry and diversity of litter. Ecosystems. 15: 6. 913-926. 26.Jafari Haghighi, M. 2003. Soil analysis methods. Nedaye Zohi Publication, 236p. (In Persian) 27.Khodashenas, A., Koocheki, A., Rezvani Moghaddam, P., and Lakzian, A. 2012. Evaluation of structural biodiversity in natural systems of arid and semiarid regions. J. Natur. Environ. Iran. J. Natur. Resour. 65: 2. 163-179. (In Persian) 28.Kooch, Y., and Zoghi, Z. 2014. Comparison of soil fertility of Acer insigne, Quercus castaneifolia and Pinus brutia stands in the hyrcanian forests of Iran. Chine. J. Appl. Environ. Biol. 20: 5. 899-905. 29.Kooch, Y., Hosseini, S.M., Scharenbroch, B.C., Hojjati, S.M., and Mohammadi, J. 2015. Pedodiversity analysis in the Caspian Forests of Iran. Geoderma Regional. 5: 1. 4-14. 30.Kooch, Y., Samadzadeh, B., and Hosseini, S.M. 2017a. The effects of broad-leaved tree species on litter quality and soil properties in a plain forest stand. Catena. 150: 1-3. 223-229. 31.Kooch, Y., Tarighat, F.S., and Hosseini, S.M. 2017b. Tree species effects on soil chemical, biochemical and biological features in mixed Caspian lowland forests. Trees. In Press, Doi: 10.1007/s00468-016-1511-5. 32.Kooch, Y., Zaccone, C., Lamersdorf, N.P., and Tonon, G. 2014. Pit and mound influence on soil features in an Oriental Beech (Fagus orientalis Lipsky) forest. Europ. J. For. Res. 133: 2. 347-354. 33.Lamande´, M., Hallaire, V., Curmi, P., Peres, G., and Cluzeau, D. 2003. Changes of pore morphology, infiltration and earthworm community in a loamy soil under different agricultural managements. Forest Ecology and Management. 54: 3. 637-649. 34.Lee, K.H., and Jose, S. 2003. Soil respiration, fine root production and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient. Forest Ecology and Management. 185: 3. 263-273. 35.Leuschner, C., and Hertel, D. 2003. Fine root biomass of temperate forests in relation to soil acidity and fertility, climate, age and species. In Progress in botany. 64: 3. 405-438. 36.Mohammad Nezhad Kiasari, Sh., Saqib Talibi, KH., Rahmani, R., and Amozad, M. 2011. Comparison diversity of soil invertebrates in natural forests and plantations in Sari Region. J. Natur. Resour. Sci. Technol. 6: 3. 118-125. (In Persian) 37.Mojarabi, M., Moftakhar Joibary, M., Kooch, Y., and Jalilvand, H. 2011. Comparison of regeneration density and biodiversity of afforestations of Populus deltoides Marsh. and Acer velutinum Boiss. in Dallak Khil of Mazandaran. Iran. J. Biol. 24: 4. 614-622. (In Persian) 38.Moslehi, M., and Nazari, J. 2012. Relations between earthworms and trees and its effects on forest soils. Human and Environmental. 20: 1. 108-113. (In Persian) 39.Munoz, F., and Beer, J. 2001. Fine root dynamics of shaded cacao plantations in Costa Rica. Agro forestry System. 51: 2. 119-130. 40.Neatrour, M.A., Jones, R.H., and Golladay, S.W. 2005. Correlations between soil nutrient availability and fine- root biomass at two spatial scales in forested wetlands with contrasting hydrological regimes. NRC Research Press. 35: 12. 2934-2941. 41.Neher, D.A., Wu, J., Barbercheck, M.E., and Anas, O. 2005. Ecosystem type affects interpretation of soil nematode community measures. Applied Soil Ecology. 30: 1. 47-64. 42.Neirynck, J., Mirtcheva, S., Sioen, G., and Lust, N. 2000. Impact of Tilia platyphyllos Scop. Fraxinus exceslsior L., Acer pseudoplatanus L., Quercus robur L. and Fagus sylvatica L. on earthworm biomass and physico – chemical properties of loamy topsoil. Forest Ecology and Management. 133: 3. 275-286. 43.Noguchi, K., Konôpka, B., Satomura, T., Kaneko, S., and Takahashi, M. 2007. Biomass and production of fine roots in Japanese forests. J. For. Res. 12: 2. 83-95. 44.Noguchi, K., Sakata, T., Mizoguchi, T., and Takahashi, M. 2005. Estimating the production and mortality of fine roots in a Japanese cedar (Cryptomeria japonica D. Don) plantation using a minirhizotron technique. J. For. Res. 10: 6. 435-441. 45.Paolo, A.G., Raffaella, B., Danio, A., Attilio, D.R., and Ettore, C. 2010. Assessment of soil-quality index based on micro arthropods in corn cultivation in Northern Italy. Ecological Indicators. 10: 2. 129-135. 46.Qiu, Q., Li, J.Y., Wang, J.H., He, Q., Su, Y., and Ma, J.W. 2015. Interactions between soil water and fertilizer application on fine root biomass yield and morphology of Catalpa bungei seedlings. In Applied Mechanics and Materials, Trans Tech Publications. 700: 323-333. 47.Reneo, M., and Eerevkova, A. 2017. Windstorms as mediator of soil nematode community changes: evidence from European spruce forest. Helminthologia. 54: 2. 36-47. 48.Römbke, J., Jänsch, S., and Didden, W. 2005. The use of earthworms in ecological soil classification and assessment concepts. Ecotoxicology and Environmental Safety. 62: 2. 249-265. 49.Salamon, J.A., Schaefer, M., Alphei, J., Schmid, B., and Scheu, S. 2004. Effects of plant diversity on Collembola in an experimental grassland ecosystem. Oikos. 106: 4. 51-60. 50.Sayer, E.J., Tanner, E.V.J., and Cheesman, A.W. 2006. Increased litter fall changes fine root distribution in a moist tropical forest. Plant and Soil. 281: 1. 5-13. 51.Sayyad, E., Hosseini, S.M., Hosseini, V., and Salehe-Shooshtari, M.H. 2012. Soil macrofauna in relation to soil and leaf litter properties in tree plantations. J. For. Sci. 58: 3. 170-180. 52.Scharenbroch, B.C., and Johnston, D.P. 2011. A microcosm study of the common night crawler earthworm (Lumbricus terrestris) and physical, chemical and biological properties of a designed urban soil. Urban ecosystems. 14: 1. 119-134. 53.Schelfhout, S., Mertens, J., Verheyen, K., Vesterdal, L., Baeten, L., Muys, B., and De Schrijver, A. 2017.Tree species identity shapes earthworm communities. Forests. 8: 85. doi:10.3390/f8030085. 54.Schwarz, B. 2015. Non-significant tree diversity but significant identity effects on earthworm communities in three tree diversity experiments. Europ. J. Soil Biol. 67: 4. 17-26. 55.Sileshi, G., and Mafongoya, P.L. 2006. Long-term effect of improved legume fallows on soil invertebrate macrofauna and maize yield in eastern Zambia. Agriculture, Ecosystems and Environment, 115: 1-4. 69-78. 56.Smith, R.G., McSwiney, C.P., Grandy, A.S., Suwanwaree, P., Snider, R.M., and Robertson, G.P. 2008. Diversity and abundance of earthworms across an agricultural land-use intensity gradient. Soil and Tillage Research. 100: 1. 83-88. 57.Sun, X., Zhang, X., Zhang, S., Dai, G., Han, S., and Liang, W. 2013. Soil nematode responses to increases in nitrogen deposition and precipitation in a temperate forest. Plos One. 8: 12. e82468. 58.Tolfa, I., Velki, M., Vukovic, R., Ecimovic, S., Katanic, Z., and Loncaric, Z. 2017. Effect ofdifferent forms of selenium on the plant–soil–earthworm system. J. Plant Nutr. Soil Sci.1-10. DOI: 10.1002/jpln.201600492.
59.Tufekcioglu, A., Raich, J.W., Isenhart, T.M., and Schultz, R.C. 1998. Fine root dynamics,coarse root biomass, root distribution and soil respiration in a multispecies riparian buffer inCentral Iowa, USA. Agroforestry Systems. 44: 2-3. 163-174.
60.Wang, X., Ma, L., Jia, Z., and Jia, L. 2014. Root inclusion net method: novel approach todetermine fine root production and turnover in Larix principis-rupprechtii Mayr plantation inNorth China. Turk. J. Agric. Forest. 38: 3. 388-398.
61.Wu, L., Ouyang, Z., Li, B., and Xu, Y. 2016. Effects of different forms of plant-derivedorganic matter on nitrous oxide emissions. Environmental Science: Processes and Impacts.
62.Xu, W., Liu, J., Liu, X., Li, K., Zhang, D., and Yan, J. 2013. Fine root production, turnoverand decomposition in a fast-growth Eucalyptus urophylla plantation in southern China.J. Soil Sed. 13: 7. 1150-1160.
63.Yan, S., Singh, A., Shenglei, N., Chonghui, F., Silong, L., Yuanliang, W., Cui, Y., andHu, L. 2012. A soil fauna index for assessing soil quality. Soil Biology and Biochemistry.47: 3. 158-165.
64.Yeates, G.W. 2003. Nematodes as soil indicators: functional and biodiversity aspects.Biology and Fertility of Soils. 37: 4. 199-210.
65.Yeates, G.W. 2007. Abundance, diversity and resilience of nematode assemblages in forestsoils. Can. J. For. Res. 37: 2. 216-225.
66.Yuan, Z.Y., and Chen, H.Y. 2010. Fine root biomass, production, turnover rates and nutrientcontents in boreal forest ecosystems in relation to species, climate, fertility and stand age:literature review and meta-analyses. Critical Reviews in Plant Sciences. 29: 4. 204-221.
67.Yusheng, Y., Jianfen, G., Guangshui, C., Zongming, H., and Jinsheng, X. 2003. Effect ofslash burning on nutrient removal and soil fertility in Chinese Fir and evergreen broadleavedforests of Mid-Subtropical China. Pedosphere. 13: 1. 87-96.
68.Zhang, K., Zheng, H., Chen, F.L., Ouyang, Z.Y., Wang, Y., Wu, Y.F., Lan, J., Fu, M., andXiang, X.W. 2015. Changes in soil quality after converting Pinus to Eucalyptus plantationsin southern China. Solid Earth. 6: 2: 115-123.
69.Zhang, M., Liang, W.J., and Zhang, X.K. 2012. Soil nematode abundance and diversity indifferent forest types at Changbai Mountain, China. Zoological Studies. 51: 5. 619-626.
70.Zushi, K. 2006. Spatial distribution of soil carbon and nitrogen storage and forestproductivity in a watershed planted to Japanese cedar (Cryptomeria Japonica D. Don).J. For. Res. 11: 5. 351-358.
71.Zuzloli, A. 2015. The effect of natural forest and plantations on plant biodiversity, litterquality and soil physical characters in Sari region. M.Sc. Thesis of Forestry, Sari AgricultureSciences and Natural Resources University, 86p. | ||
آمار تعداد مشاهده مقاله: 659 تعداد دریافت فایل اصل مقاله: 657 |