
تعداد نشریات | 13 |
تعداد شمارهها | 626 |
تعداد مقالات | 6,517 |
تعداد مشاهده مقاله | 8,746,454 |
تعداد دریافت فایل اصل مقاله | 8,317,289 |
تعیین اهمیت نسبی پارامترهای دو مدل هیدرولوژیکی یکپارچه با استفاده از روش های موریس، سوبول و شاخص آنتروپی | ||
مجله پژوهشهای حفاظت آب و خاک | ||
مقاله 1، دوره 24، شماره 2، خرداد 1396، صفحه 1-21 اصل مقاله (605.21 K) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/jwfst.2017.3673 | ||
نویسندگان | ||
ابوالحسن فتح آبادی* 1؛ حامد روحانی2؛ سید مرتضی سیدیان3 | ||
1دانشگاه گنبد کاووس | ||
2استادیار- دانشگاه گنبد | ||
3دانشگاه گنبد کاووس- هیات علمی | ||
چکیده | ||
ont-family: TimesNewRomanPSMT;font-sizدر طی دهههای اخیر با افزایش قابلیت مدلسازی با کامپیوتر شاهد افزایش پیچیدگی و تنوع مدلهای هیدرولوژیکی بودهایم. با افزایش پیچیدگی مدل، تعداد پارامترهای مدل زیاد شده که این مسأله باعث افزایش احتمال بیشبرازشی و سخت شدن شناسایی پارامترها و ساختار مدل میشود. بدینمنظور با استفاده از آنالیز حساسیت پارامترهای مهم که به نوعی رفتار مدل را کنترل میکنند شناسایی شده و سهم هر یک از پارامترها در عدم قطعیت خروجی مدل تعیین میشود. روشهای مختلفی برای آنالیز حساسیت پارامترها و ورودیهای مدلهای مختلف وجود دارد که آنها را به دو دسته موضعی و سراسری تقسیمبندی میکنند. در حالیکه در روشهای موضعی تغییرات خروجی مدل در حالتی که سایر پارامترها ثابت بوده و فقط یکی از پارامترها تغییر میکند بررسی میشود. روشهای سراسری قادر بوده آنالیز حساسیت را برای کل دامنه پارامترهای مدل اجرا کرده و همچنین میتوانند اثرات متقابل بین پارامترها و غیرخطی بودن را نیز در نظر بگیرند. در این پژوهش کارایی سه روش آنالیز حساسیت شامل روشهای موریس، سوبول و شاخص آنتروپی در آنالیز حساسیت پارامترها و ورودیهای مدلهای هیدرلوژیکی TOPMODELو | ||
کلیدواژهها | ||
آنالیز حساسیت؛ آنتروپی؛ سوبول؛ موریس؛ مدل هیدرولوژیکی | ||
مراجع | ||
1.Aghakouchak, A., and Habib, E. 2010. Application of a conceptual hydrologic model in teaching hydrologic processes. Inter. J. Engin. Edu. 26: 4. 963-973. 2.Baroni, G., and Tarantola, S. 2014. A general probabilistic framework for uncertainty and global sensitivity analysis of deterministic models: a hydrological case study. Environmental Modelling and Software. 51: 26-34. 3.Bergstrom, S. 1976. Development and application of a conceptual runoff model for Scandinavian catchments. Bulletin: Series A - Dept. of Water Resources Engineering, Lund Institute of Technology ; no. 52. 134p. 4.Beven, K.J., Lamb, R., Quinn, P.F., Romanowicz, R., and Freer, J. 1995. TOPMODEL, P 627-668, In: V.P. Singh (eds), Computer Models of Watershed Hydrology,Water Resour. Publ, Fort Collins, Colo. 5.Beven, K.J. 1997. TOPMODEL: a critique. Hydrological Processes.11: 9. 1069-1085. 6.Campolongo, F., and Braddock, R. 1999. The use of graph theory in the sensitivity analysis of the model output: A second order screening method. Reliability Engineering and System Safety. 64: 1. 1-12. 7.Campolongo, F., Saltelli, A., and Cariboni, F. 2011. From screening to quantitative sensivitative analysis, a unified approach. Computer Physics Communication. 182: 4. 978-988. 8.Campolongo, F., Cariboni, J., and Saltelli, A. 2007. An effective screening design for sensitivity analysis of large models. Environmental Modeling and Software. 22: 10. 1509-1518. 9.Cariboni, J., Gatelli, D., Liska, R., and Saltelli, A. 2007. The role of sensitivity analysis in ecological modelling. Ecological Modelling. 203: 1-2. 167-182. 10.Cibin, R., Sudheer, K.P., and Chaubey, I. 2010. Sensitivity and identifiability of stream flow generation parameters of the SWAT model. Hydrological Processes. 24: 9. 1133-1148. 11.Chen, X., Ng, B.M., Sun, Y., and Tong, C.H. 2013. A computational method for simulating subsurface flow and reactive transport in heterogeneous porous media embedded with flexible uncertainty quantification. Water Resources Research. 49: 9. 5740-5755. 12.Clark, M.P., Kavetski, D., and Fenicia, F. 2011. Pursuing the method of multiple working hypotheses for hydrological modelling. Water Resources Research. 47: 9. 1-16. 13.Cukier, R.I., Levine, H.B., and Shuler, K.E. 1978. Nonlinear sensitivity analysis of multiparameter model system. J. Comp. Physic. 26: 1. 1-42. 14.Duan, Q., Gupta, V.K., and Sorooshian, S. 1992. Effective and efficient global optimization for conceptual rainfall–runoff models. Water Resources Research. 28: 4. 1015-1031. 15.Fu, G., Kapelan, Z., and Reed, P. 2012. Reducing the complexity of multi-objective water distribution system optimization through global sensitivity analysis. J. Water Resour. Plan. Manage. 138: 3. 196-207. 16.Gan, Y., Duan, Q., Gong, W., Tong, C., Sun, Y., Chu, W., Ye, A., Miao, C., and Di, Z. 2014. A comprehensive evaluation of various sensitivity analysis methods: a case study with a hydrological model. Environmental Modelling and Software. 51: 269-285. 17.Gong, Y.W., Shen, Z.Y., Hong, Q., Liu, R.M., and Liao, Q. 2011. Parameter uncertainty analysis in watershed total phosphorus modelling using the GLUE methodology. Agriculture, Ecosystems and Environment. 142: 3-4. 246-255. 18.Granger, C.W.J., and Lin, J. 1994. Using the mutual information coefficient to identify lags in nonlinear models. J. Time Seri. Anal. 15: 4. 371-384. 19.Herman, J.D., Reed, P.M., and Wagener, T. 2013. Time-varying sensitivity analysis clarifies the effects of watershed model formulation on model behavior. Water Resources Research. 49: 3. 1400-1414. 20.Jakeman, A.J., and Hornberger, G.M. 1993. How much complexity is warranted in a rainfallrunoff model. Water Resources Research. 29: 8. 2637-2649. 21.King, D.M., and Perera, B.J.C. 2013. Morris method of sensitivity analysis applied to assess the importance of input variables on urban water supply yield – a case study. J. Hydrol. 477: 17-32. 22.Li, J., Duan, Q., Gong, W., Ye, A., Dai, Y., Miao, C., Di, Z., Tong, C., and Sun, Y. 2013. Assessing parameter importance of the Common Land Model based on qualitative and quantitative sensitivity analysis. Hydrology and Earth System Sciences. 17: 8. 3279-3293. 23.Mishra, S., Deeds, N., and Ruskauff, G. 2009. Global sensitivity analysis techniques for probabilistic ground water modelling. Ground Water. 47: 5. 727-744. 24.Mishra, S., and Knowlton, R.G. 2003. Testing for input–output dependence in performance assessment models. In: Proceedings of the Tenth International High-Level Radioactive Waste Management Conference, Las Vegas, Nevada. Pp: 882-887. 25.Morris, M.D. 1991. Factorial sampling plans for preliminary computational experiments. Technometrics. 33: 2. 161-174. 26.Nandakumar, N., and Mein, R.G. 1997. Uncertainty in rainfall-runoff model simulation and the implication for predicting the hydrologic effects of land use change. J. Hydrol. 192: 211-232. 27.Qi, W., Zhang, C., Chu, J., and Zhou., H. 2013. Sobol sensitivity analysis for TOPMODEL hydrological model: A case study for the Biliu River Basin, China. J. Hydrol. Environ. Res. 1: 1. 1-10. 28.Renard, B., Kavetski, D., Kuczera, G., Thyer, M., and Franks, S.W. 2010. Understanding predictive uncertainty in hydrologic modelling: The challenge of identifying input and structural errors, Water Resources Research. 46: 5, W05521, doi:10.1029/2009WR008328. 29.Rosolem, R., Gupta, H.V., Shuttleworth, W.J., Zeng, X., and de Goncalves, L.G. 2012. A fully multiple-criteria implementation of the Sobol’ method for parameter sensitivity analysis. J. Geophysic. Res. 117. 117, D07103, doi:10.1029/2011JD016355. 30.Rouhani, R., and Farahi Moghadam, M. 2014. Application of the Genetic Algorithm technique for optimization of the hydrologic Tank and SIMHHYD models’ parameters. J. Range Water. Manage. 66. 4. 521-533. (In Persian) 31.Ruano, M.V., Ribes, J., Ferrer, J., and Sin, G. 2011. Application of the Morris method for screening the influential parameters of fuzzy controllers applied to wastewater treatment plants. Water Science and Technology. 63: 10. 2199-2206. 32.Ruano, M.V., Ribes, J., Seco, A., and Ferrer, J. 2012. An improved sampling strategy based on trajectory design for application of the Morris method to systems with many input factors. Environmental Modelling and Software. 37: 11. 103-109. 33.Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M. 2004. Sensitivity analysis in practice a guide to assessing scientific models. John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, 219p. 34.Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and Tarantola, S. 2008. Global Sensitivity Analysis. The Primer. John Wiley and Sons, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, 292p. 35.Sobol, I.M. 2001. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computation in Simulation. 55: 1-3. 271-280. 36.Sobol, I.M. 1993. Sensitivity estimates for nonlinear mathematical models. Mathematical Modelling and Computational Experiment. 1: 4. 407-417. 37.Song, X., Zhang, J., Zhan, Ch., Xuan, Y., Ye, M., and Xu, C.H. 2015. Global sensitivity analysis in hydrological modelling: Review of concepts, methods, theoretical framework and applications. J. Hydrol. 523. 739-757. 38.Tang, Y., Reed, P., van Werkhoven, K., and Wagener, T. 2007a. Advancing the identification and evaluation of distributed rainfall-runoff models using global sensitivity analysis. Water Resources Research. 43: 6.DOI: 10.1029/2006WR005813. 39.Tang, Y., Reed, P., Wagener, T., and van Werkhoven, K. 2007b. Comparing sensitivity analysis methods to advance lumped watershed model identification and evaluation. Hydrology and Earth System Sciences. 11: 2. 793-817. 40.Tong, C., and Graziani, F. 2008. A practical global sensitivity analysis methodology for multi-physics applications. Computational methods in transport: verification and validation. Lecture Notes in Computational Science and Engineering. 62: 277-299. 41.Vanrolleghem, P.A., Mannina, G., Cosenza, A., and Neumann, M. 2015. Global sensitivity analysis for urban water quality modelling: Terminology, convergence and comparison of different methods. J. Hydrol. 522: 339-352. 42.Vertessy, R.A., Hatton, T.J., Shaughnessy, P.J., and Jayasuriya, M.D. 1993. Predicting water yield from a Mountach forest catchment using a terrain analysis based catchment model. J. Hydrol. 150: 665-700. 43.Wainwright, H., Finsterle, M., Jung, Y., Zhou, Q., and Birkholzer, J.T. 2014. Making sense of global sensitivity analysis. Computers and Geosciences. 65: 84-94. 44.Zeng, X., Wang, D., and Wu, J. 2012. Sensitivity analysis of the probability distribution of groundwater level series based on information entropy. Stochastic Environmental Research and Risk Assessment. 26: 3. 345-356. 45.Zhang, C., Chu, J., and Fu, G. 2013. Sobol’s sensitivity analysis for a distributed hydrological model of Yichun river basin, China. J. Hydrol. 480: 58-68. | ||
آمار تعداد مشاهده مقاله: 699 تعداد دریافت فایل اصل مقاله: 866 |