
تعداد نشریات | 13 |
تعداد شمارهها | 623 |
تعداد مقالات | 6,502 |
تعداد مشاهده مقاله | 8,655,171 |
تعداد دریافت فایل اصل مقاله | 8,259,338 |
مقایسه قابلیت نانورس ها و رس های استخراج شده از خاک های مختلف در تثبیت برخی عناصر سنگین | ||
مجله پژوهشهای حفاظت آب و خاک | ||
مقاله 10، دوره 23، شماره 3، مرداد 1395، صفحه 189-205 اصل مقاله (3.96 M) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/jwfst.2016.3193 | ||
نویسندگان | ||
محمد علی منجم* 1؛ احمد حیدری2؛ غلام باقری مرندی3 | ||
1دانشگاه تهران | ||
2دکتری خاکشناسی- ارزیابی اراضی و رده بندی خاک .دانشیار گروه مهندسی علوم خاک، دانشگاه تهران. | ||
3دانشکده کشاورزی و منابع طبیعی دانشگاه تهران | ||
چکیده | ||
سابقه و هدف: نانو رسها و رسها مهمترین اجزای سازنده زیست بومهای خاکی هستند که خصوصیات فیزیکی و شیمیایی خاک به نوع و مقدار آنها وابسته میباشد. از این رو نقش مهمی را در کیفیت خاک ایفا میکنند. بسیاری از رسهای موجود در خاک حداقل در یک بعد خود دارای ابعاد نانو میباشند. این مسئله موجب ایجاد قابلیتهایی در خاک میشود که از جمله آنها میتوان به امکان تثبیت و نگهداری عناصر سنگین در آنها اشاره نمود. در بخش رس خاکهای حاصل از خاکستر آتشفشانی از قبیل اندیسولها، ساختارهای متفاوتی از نانوذرات مانند آلومینوسیلیکاتهای دارای ساختار نانوگویچه (آلوفان) و نانولوله (ایموگولایت) وجود دارد. این ذرات نقش مهمی در خصوصیات فیزیکی و شیمیایی خاکهای آتشفشانی، ذخیره موادآلی، تثبیت فسفر، نگهداشت فلزات سنگین، نگهداری آب و فرایندهای بیوژئوشیمیایی ایفا میکنند. رهاشدن فلزات سنگین درون آب و خاک در نتیجه فعالیتهای صنعتی و کشاورزی تهدید جدی برای محیط زیست میباشد. در این مطالعه جذب سرب و کادمیوم به منظور مقایسه قابلیت نگهداری این عناصر در رس و نانورس مورد بررسی قرار گرفت. مواد و روشها: 12 نمونه از 5 پروفیل واقع در 3 منطقه با کانیشناسی رس مختلف مورد مطالعه قرار گرفتند. پس ازحذف مواد آلی، املاح محلول، آهک و اکسیدهایآهن از خاک، رس خالص پس از اعمال تیمارهای لازم توسط دستگاه پراش پرتو ایکس مورد مطالعه قرارگرفته و پراش نگاشتهای به دست آمده تفسیر شد. بخش رس و نانورس با روشهای استاندارد خالصسازی و مقادیر نگهداشت عناصر کادمیوم و سرب در غلظتهای صفر، 6/1، 3/8، 6/16 و 3/33 میلیگرم بر لیتر، و pH ثابت اندازهگیری شد. این تحقیق به بررسی نفش نانورسها و رسها بر جذب عناصر سنگین در pH ثابت میپردازد. برای رسیدن به این هدف میزان جذب سرب و کادمیوم توسط رس و نانورس طبیعی موجود در خاک پس از حذف عوامل سیمان کننده و جداسازی هر بخش با روشهای استاندارد در pH برابر 6 مورد مطالعه قرار گرفت. یافتهها: خاکهای مورد مطالعه در دو رده اریدیسول و اندیسول طبقهبندی شدند. کانیشناسی خاکهای مورد مطالعه نشان میدهد ترکیبی از کانیهای اسمکتایتی، کلرایتی، ایلایتی و هیدروکسی بین لایهای بخش عمده کانیهای رسی این خاکها را تشکیل میدهد. نتایج به دست آمده نشان داد که میزان نگهداشت عناصر سنگین مورد مطالعه بسته به نوع عنصر در خاکهای مختلف متفاوت میباشد. در همه نمونههای اندیک و غیراندیک، با افزایش غلظت عناصر سنگین در محلول، مقدار نگهداشت افزایش یافت، ولی روند افزایش نگهداشت در نانورس شیب تندتری نسبت به رس نشان داد. نتیجهگیری: میزان جذب کادمیوم در رسها و نانورسهای مورد بررسی پس از رسیدن به غلظت 3/8 میلیگرم بر لیتر ، ثابت شد ولی میزان جذب سرب در غلظتهای مورد مطالعه کماکان روند افزایشی نشان دادند. در بیشتر نمونههای مربوط به خاکهای غیر اندیک میزان جذب به صورت (سرب> کادمیوم) و در خاکهای اندیک نیز میزان جذب عمدتا به صورت (سرب >کادمیوم) مشاهده شد. | ||
کلیدواژهها | ||
آلوفان؛ خصوصیات اندیک؛ کانیشناسی رس؛ تثبیت سرب؛ تثبیت کادمیوم | ||
مراجع | ||
1.Abidin, Z., Matsue, N., and Henmi, T. 2007. Differential formation of allophane and imogolite: Experimental and molecular orbital study. J. Comp.-Aided Mater. Des. 14: 5-18.
2.Alumaa, P., Kirso, U., Petersell, V., and Steinnes, E. 2002. Sorption of toxic heavy metals to soils. Int. J. Hyg. Environ. Health. 204: 275-276.
3.Babel, S., and Kurniawan, T.A. 2003. Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J. Hazard. Mater. 97: 219-243.
4.Barakat, M.A. 2011. New trends in removing heavy metals from industrial wastewater. Review article. Arab. J. Chem. 4: 361-377.
5.Barka, N., Qourzal, S., Assabbane, A., Nounah, A., and Ait-Ichou, Y. 2011. Removal of reactive yellow 84 from aqueous solutions by adsorption onto hydroxyapatite. J. Saudi Chem. Soc. 15: 263-7.
6.Basile-Doelsch, I., Amundson, R., Stone, W., Masiello, C., Bottero, J.Y., Colin, F., Masin, F., Borschneck, D., and Meunier, J.D. 2005. Mineral control of soil organic carbon dynamic in an allophanic soil (La Réunion). Europ. J. Soil Sci. 56: 6. 689-703.
7.Benjamin, M.M., and Leckie, J.O. 1981. Conceptual model for metal-ligand-surface interactions during adsorption. Environmental Science and Technology. 15: 1050-1057.
8.Calabi-Floody, M., Bendall, J.S., Jara, A.A., Welland, M.E., Theng, B.K.G., Rumpel, C., and Mora, M.L. 2011. Nanoclays from an Andisol: extraction, properties and carbon stabilization. Geoderma. 161: 159-167.
9.Clark, C.J., and McBride, M.B. 1984. Chemisorption of Cu(II) and Co(II) on allophane and imogolite. Clays and Clay Miner. 32: 300-310.
10.Clark, C.J., and McBride, M.B. 1985. Adsorption of Cu(II) by allophane as affected by phosphate. Soil Sci. 139: 412-421.
11.Covelo, E.F., Andrade, M.L., and Vega, F.A. 2004. Simultaneous adsorption of Cd, Cr, Cu, Ni, Pb and Zn by different soils. J. Food Agric. Environ. 2: 244-250.
12.Dawodu, F.A., and Akpomie, K.G. 2014. Simultaneous adsorption of Ni(II) and Mn(II) ions from aqueous solution unto a Nigerian kaolinite clay. J. Mater Res. Technol. 3: 2. 129-141.
13.Delvaux, B.E., Dufey, L.V., and Herbillon, A.J. 1989. Potassium exchange behavior in a weathering sequence of volcanic ash soils. Soil Sci. Soc. Am. J. 53: 1679-1684.
14.Dixon, J.B., Weed, S.B., and Kittrick, J.A. 1986. Minerals in Soil Environment. 2nd Ed. SSSA. Book Series No. 1.
15.Farmer, V.C., Fraser, A.R., and Tait, J.M. 1977. Synthesis of imogolite: a tubular aluminium silicate polymer. J. Chem. Soc. Chem. Comm. 6: 462-463.
16.Genc-Fuhrman, H., Mikkelsen, P.S., and Ledin, A. 2007. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater: Experimental comparison of 11 different sorbents. Water Research. 41: 591-602.
17.Ghorbel-Abid, I., Galai, K., and Trabelsi-Ayadi, M. 2010. Retention of chromium (III) and cadmium (II) from aqueous solution by illitic clay as a low-cost adsorbent. Desalination. 256: 190-195.
18.Hall, P.L., Churkman, G.J., and Theng, B.K.G. 1985. Size distribution of allophane unit particles in aqueous suspensions. Clays and Clay Miner. 33: 345-349.
19.Handershot, W.H., and Duquette, M. 1986. A simple barium chloride method for determining cation exchange capacity and exchangeable cations. Soil Sci. Soc. Am. J. 50: 605-608.
20.Illera, V., Garrido, F., Serrano, S., and Gonzalez. G.M.T. 2004. Immobilization of the heavy metals Cd, Cu and Pb in an acid soil amended with gypsum- and lime- rich industrial byproducts. onlinelibrary.wiley.com. 55: 1.
21.Jara, A.A., Violante, A., Pigna, M., and Mora, M.L. 2006. Mutual interactions of sulfate, oxalate, citrate, and phosphate on synthetic and natural allophanes. Soil Sci. Soc. Am. J. 70: 337-346. 22.Karnib, M., Kabbani, A., Holail, H., and Olama, Z. 2014. Heavy Metals Removal Using Activated Carbon, Silica and Silica Activated Carbon Composite. Energy Procedia. 50: 113-120. 23.Khan, H., Matsue, N., and Henmi, T. 2006. Adsorption of water on nano-ball allophane. Clay Science. 12: 2. 261-266.
24.Krishna Reddy, R., Xie, T., and Dastgheibi, S. 2014. Removal of heavy metals from urban storm water runoff using different filter materials. J. Environ. Chem. Engin. 2: 282-292.
25.Krishna Bhattacharyya, G., and Gupta, S.S. 2006. Pb(II) uptake by kaolinite and montmorillonite in aqueous medium: Influence of acid activation of the clays. Colloids and Surfaces A: Physicochem. Eng. Aspects. 277: 191-200.
26.Kushwaha, A.K., Gupta, N., and Chattopadhyaya, M.C. 2012. Adsorption behavior of lead onto a new class of functionalized silica gel. Arab. J. Chem. DOI.
27.Lair, G.J., Gerzabek, M.H., and Haberhauer, G. 2007. Retention of copper, cadmium and zinc in soil and its textural fractions influenced by long-term field management. Europ. J. Soil Sci. 58: 1145-1154.
28.Levard, C., Doelsch, E., Rose, J., Masion, A., Basile-Doelsch, I., Proux, O., Hazemann, J.L., Borschneck, D., and Bottero, J.Y. 2009. Role of natural nanoparticles on the speciation of Ni in andosols of la Reunion. Geochimica et Cosmochimica Acta. 73: 16. 4750-4760.
29.Li, Z., and Hu, N. 2003. Direct electrochemistry of hemeproteins in their layer-by-layer films with clay nanoparticles. J. Elec. Chem. 558: 155-165.
30.Mekatel, H., Amokrane, S., Benturki, A., and Nibou, D. 2012. Treatment of Polluted Aqueous Solutions by Ni2+, Pb2+, Zn2+, Cr+6, Cd+2 and Co+2 Ions by Ion Exchange Process Using Faujasite Zeolite. Procedia Engineering. 33: 52-57.
31.Mobasherpour, I., Salahi, E., and Pazouki, M. 2012. Comparative of the removal of Pb2+, Cd2+ and Ni2+ by nano crystallite hydroxyapatite from aqueoussolutions: Adsorption isotherm study. Arab. J. Chem. 5: 439-446.
32.Monajjem, M.A., Heidari, A., and Bagheri Marandi, G. 2013. An investigation the role of nanoclays on some soil physico-chemical properties. M.Sc. Thesis, Soil Science, University of Tehran. (In Persian)
33.Naseem, R., and Tahir, S.S. 2000. Thermodynamic studies of Mn(II) and Fe(II) adsorption on to bentonite. J. Chem. Therm. 32: 651-658.
34.Olguin, M.T., Rios, M.S., Acosta, D., Bosch, P., and Bulbulian, S. 1997. UO2 sorption on bentonite. J. Radioanal. Nucl. Chem. 218: 65-69.
35.Srivastava, P., Singh, B., and Angove, M. 2005. Competitive adsorption behavior of heavy metals on kaolinite. J. Coll. Int. Sci. 290: 28-38.
36.Parfitt, R.L. 1989. Phosphate reactions with natural allophane, ferrihydrite and goethite. J. Soil Sci. 40: 2. 359-369. 37.Parfitt, R.L. 2009. Allophane and imogolite: role in soil biogeochemical processes. Clay Minerals. 44: 1. 135-155. 38.Rios, C.A., Williams, C.D., and Roberts, C.L. 2008. Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, natural clinker and synthetic zeolites. J. Hazard. Mater. 156: 23-35.
39.Saha, U.K., Taniguuchi, S., and Sakurai, K. 2002. Simultaneous adsorption of cadmium, zinc, and lead on hydroxyl aluminum- and hydroxyl aluminosilicate - montmorillonite complexes. Soil Sci. Soc. Am. J. 66: 117-128.
40.Sheet, I., Kabbani, A., and Holail, H. 2014. Removal of Heavy Metals Using Nanostructured Graphite Oxide, Silica Nanoparticles and Silica/Graphite Oxide Composite. Energy Procedia. 50: 130-138.
41.Shukla, A., Zhang, Y.H., Dubey, P., Marqrave, J.L., and Shukla, S.S. 2002. The role of sawdust in the removal of unwanted materials from water. Hazard Mater. 95: 1-2. 137-52.
42.Soil survey staff. 2014. Soil survey field and laboratory methods manual. Soil survey investigations report. No. 51. Version 20. Department of agriculture, natural resources conservation service.
43.Tanabe, K. 1981. Solid Acid and Base Catalysis, Springer-Verlag, New York.
44.Tanneberg, H., and Jahn, R. 2002. Heavy metal sorption by andic and non-andic horizons from volcanic parent materials.Soils of Volcanic Regions in Europe. springer. Pp: 423-435.
45.Tsia, W.T., and Chen, H.R. 2010. Removal of malachite green from aqueous solution using low-cost chlorella based biomass. J. Hazard Mater. 175: 1-3. 844-849.
46.Usman, A.R.A. 2008. The relative adsorption selectivities of Pb, Cu, Zn, Cd and Ni by soils developed on shale in New Valley, Egypt. Geoderma. 144: 334-343.
47.Van Ranst, E., Utami, S.R., Verdoodt, A., and Qafoku, N.P. 2008. Mineralogy of a perudic Andosol in central Java, Indonesia. Geoderma. 144: 379-386.
48.Vega, F.A., Covelo, E.F., and Andrade, M.L. 2006. Competitive sorption and desorption of heavy metals in mine soils: Influence of mine soil characteristics. J. Coll. Int. Sci. 298: 582-592. 49.Walkley, A., and Black, C.A. 1934. An examination of the Dettjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37: 29-38. 50.Weng, C.H., Lin, Y.T., and Tzeng, T.W. 2009. Removal of methylene blue from aqueous solution by adsorption onto pineapple leaf powder. J. Hazard. Mater. 170: 417-424.
51.Yong, R.N., and Phadangchewit, Y. 1993. pH Influence on selectivity and Retention of heavy Metals in some soils. Can. Geotech. J. 30: 821-833.
52.Yuan, G., Percival, H.J., Theng, B.K.G., and Parfitt, R.L. 2002. Sorption of Copper and Cadmium by Allophane-Humic Complexes. Developments in Soil Science, 28: 37-47. | ||
آمار تعداد مشاهده مقاله: 2,019 تعداد دریافت فایل اصل مقاله: 2,504 |