
تعداد نشریات | 13 |
تعداد شمارهها | 622 |
تعداد مقالات | 6,501 |
تعداد مشاهده مقاله | 8,619,451 |
تعداد دریافت فایل اصل مقاله | 8,210,349 |
How energy and water availability constrain vegetation water-use along the North Australian Tropical Transect | ||
International Journal of Plant Production | ||
مقاله 11، دوره 10، شماره 3، مهر 2016، صفحه 403-423 اصل مقاله (2.83 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22069/ijpp.2016.2905 | ||
نویسندگان | ||
W. Zhuang1؛ L. Cheng2؛ R. Whitley3؛ H. Shi4؛ J. Beringer5؛ Y. Wang6؛ L. He7؛ J. Cleverly8؛ D. Eamus4؛ Q. Yu* 9 | ||
1Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy ofScience, Beijing 100101, China. | ||
2Water for a Healthy Country Flagship, CSIRO Land and Water, Canberra, ACT, Australia. | ||
3Department of Biology, Macquarie University, NSW 2109, Australia. | ||
4School of Life Sciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW, 2007, Australia. | ||
5School of Earth and Environment, The University of Western Australia, Crawley, WA, 6009, Australia. | ||
6CSIRO Ocean and Atmosphere Flagship, Private Bag 1, Aspendale, Victoria 3195, Australia. | ||
7National Meteorological Center, Beijing 100081, China | ||
8eSchool of Life Sciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW, 2007, Australia | ||
9Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy ofScience, Beijing 100101, China | ||
چکیده | ||
Energy and water availability were identified as the first order controls of evapotranspiration (ET) in ecohyrodrology. With a ~1,000 km precipitation gradient and distinct wet-dry climate, the North Australian Tropical Transect (NATT) was well suited for evaluating how energy and water availabilities constrain water use by vegetation, but has not been done yet. In this study, we addressed this question using Budyko framework that quantifies the evapotranspiration as a function of energy-limited rate and precipitation. Path analysis was adopted to evaluate the dependencies of water and carbon fluxes on ecohydrological variables. Results showed that the major drivers of water and carbon fluxes varied between wet and dry savannas: down-welling solar radiation was the primary driver of the wet season ET in mesic savanna ecosystems, while soil water availability was the primary driver in inland dryland ecosystems. Vegetation can significantly regulate water and carbon fluxes of savanna ecosystems, as supported by the strong link of LAI with ET and GPP from path analysis. Vegetation structure (i.e. the tree:grass ratio) at each site can regulate the impact of climatic constraint on ET and GPP. Sites with a low tree:grass ratio had ET and GPP that exceeded sites with high a tree:grass ratio when the grassy understory was active. Identifying the relative importance of these climate drivers and vegetation structure on seasonal patterns of water use by these ecosystems will help us decide our priorities when improving the estimates of ET and GPP. | ||
کلیدواژهها | ||
Evapotranspiration؛ Savannas؛ Energy limitation؛ Water limitation؛ GPP | ||
آمار تعداد مشاهده مقاله: 1,417 تعداد دریافت فایل اصل مقاله: 1,274 |