Wright, I., Reich, P., Westoby, M., Ackerly, D., Baruch, Z., and Bongers, F., et al. (2004). The worldwide leaf economics spectrum. Nature. 428: 821–827.
2.Bjorkman, A., Myers-Smith, I., Elmendorf, S., Normand, S., Rüger, N., & Beck, P., et al. (2018). Plant functional trait change across a warming tundra biome. Nature. 562: 57–62.
3.Yang, L., Zhao, H., Zuo, Z., Li, X., Yu, D., & Wang, Z. (2021). Generality and shifts in leaf trait relationships between alpine aquatic and terrestrial herbaceous plants on the Tibetan Plateau. Frontiers in Ecology and Evolution. 9: 706237.
- Li, Y., Zou, D., Shrestha, N., Xu, X., Wang, Q., & Jia, W. (2020). Spatiotemporal variation in leaf size and shape in response to climate. J. of Plant Ecology. 13: 87–96.
- Song, L.L., Tian, Q., Li, G., Li, Z.X., Liu, X., & Gui, J., et al. (2022). Variation in characteristics of leaf functional traits of alpine vegetation in the Three-River headwaters region. Chinese Ecological Indicators. 145: 109557.
- Li, Y., Reich, P.B., Schmid, B., Shrestha, N., Feng, X., Lyu, T., Maitner, B.S., Xu, X., Li, Y., & Zou, D., et al. (2020). Leaf size of woody dicots predicts ecosystem primary productivity. Ecology Letters. 23: 1003–1013.
- Li, X., Song, X., Zhao, J., Lu, H., Qian, C., & Zhao, X. (2021). Shifts and plasticity of plant leaf mass per area and leaf size among slope aspects in a subalpine meadow. Ecology and Evolution. 11: 14042–14055.
- Zhang, Z., Sun, J., Liu, M., Shang, H., Wang, J., & Wang, J., et al. (2022). Context-dependency in relationships between herbaceous plant leaf traits and abiotic factors. Frontiers in Plant Science. 13: 757077.
Everingham, S.E., Offord, C.A., Sabot, M.E.B., & Moles, A.T. (2021). Time-traveling seeds reveal that plant regeneration and growth traits are responding to climate change. Ecology. 102: 3. e03272.
- Moles, A.T., et al. (2014). Which is a better predictor of plant traits: Temperature or precipitation? J. of Vegetation Science. 25: 5. 1167–1180.
- Henn, J.J., Buzzard, V., Enquist, B.J., Halbritter, A.H., Klanderud, K., Maitner, B.S., Michaletz, S.T., Pötsch, C., Seltzer, L., Telford, R.J., Yang, Y., Zhang, L., & Vandvik, V. (2018). Intraspecific trait variation and phenotypic plasticity mediate alpine plant species response to climate change. Frontiers in Plant Science. 9:1548.
- Tserej, O., & Feeley, K.J. (2021). Variation in leaf temperatures of tropical and subtropical trees are related to leaf thermoregulatory traits and not geographic distributions. Biotropica. 53: 868–878.
- Bhusal, N., Lee, M., Han, A.R., Han, A., & Kim, H.S. (2020). Responses to drought stress in Prunus sargentii and Larix kaempferi seedlings using morphological and physiological parameters. Forest Ecology and Management. 465: 118099.
- Wright, I.J., Dong, N., Maire, V., Prentice, I.C., Westoby, M., Diaz, S., Gallagher, R.V., Jacobs, B.F., Kooyman, R., Law, E.A., Leishman, M.R., Niinemets, Ü., Reich, P.B., Sack, L., Villar, R., Wang, H., & Wilf, P. (2017). Global climatic drivers of leaf size. Science. 357: 6354. 917–921.
- Peppe, D.J., Royer, D.L., Cariglino, B., Oliver, S.Y., Newman, S., Leight, E., Enikolopov, G., Fernandez-Burgos, M., Herrera, F., & Adams, J.M., et al. (2011). Sensitivity of leaf size and shape to climate: Global patterns and paleoclimatic applications. New Phytologist. 190: 724–739.
Chen, W.Y., Su, T., Jia, L. B., & Zhou, Z.K. (2019). The relationship between leaf physiognomy and climate based on a large modern dataset: Implications for palaeoclimate reconstructions in China. Palaeogeography, Palaeoclimatology, Palaeoecology. 527:1–13.
- Li, Y., Wang, Z., Xu, X., Han, W., Wang, Q., & Zou, D. (2016). Leaf margin analysis of Chinese woody plants and the constraints on its application to palaeoclimatic reconstruction. Global Ecology and Biogeography. 25: 1401–1415.
- Hassanzad-Navroodi, I., Zarkami, R., Basati, M., & Mohammadi-Limaei, S. (2015). Quantitative and qualitative characteristics of Persian oak along altitudinal gradation and gradient (Case study: Ilam province, Iran). J. of Forest Science. 61: 7. 297–305.
- Azizi, K., Naji, H., Hosseinian Khoshroo, H., & Heidari, M. (2020). Effects of altitude and season on physiological characteristics of Persian oak (Quercus brantii Lindl.) leaves in the Zagros forests (Case study: Ilam). Plant Process and Function. 9: 35. 101–114.
- Everingham, S.E., Offord, C.A., Sabot, M.E.B., & Moles, A.T. (2023). Leaf morphological traits show greater responses to changes in climate than leaf physiological traits and gas exchange variables. Ecology and Evolution. 14: e10941.
- Soheili, F., Heydari, M., Woodward, S., & Naji, H.R. (2023a). Adaptive mechanism in Quercus brantii Lindl. leaves under climatic differentiation: Morphological and anatomical traits. Scientific Reports. 13: 3580.
- Soheili, F., Heydari, M., Woodward, S., Abdul-Hamid, H., & Naji, H.R. (2023b). Adaptive plasticity of morphological and anatomical traits of Brant’s oak (Quercus brantii Lindl.) leaves under different climates and elevation gradients. Forest Science and Technology. https://doi.org/10.1080/21580103.2023.2182369
- de Martonne, E. (1926). L'indice d'aridité. Bulletin de l'Association de Géographes Français. 3: 9. 3–5.
- Sagheb Talebi, K., Sajedi, T., & Pourhashemi, M. (2013). Forests of Iran. Springer. https://doi.org/10.1007/978-94-007-7371-4
- Kiani, M., Hasan Lashkari, H., & Ghaemi, H. (2019). The effect of Zagros Mountains on rainfall changes of Sudanese low-pressure system in western Iran. Modeling Earth Systems and Environment. 5: 1769–1779.
- Gebremedhin, M.A., Kahsay, G.H., & Fanta, H.G. (2018). Assessment of spatial distribution of aridity indices in Raya Valley, northern Ethiopia. Applied Water Science. 8: 8. 1–8.
- Hadi, S.J., & Tombul, M. (2018). Comparison of spatial interpolation methods of precipitation and temperature using multiple integration periods. J. of the Indian Society of Remote Sensing. 46: 7. 1187–1199.
- Lam, K.C., Bryant, R.G., & Wainright, J. (2015). Application of spatial interpolation method for estimating the spatial variability of rainfall in semiarid New Mexico, USA. Mediterranean J. of Social Sciences. 6: 4. 108.
- Cooper, R.T. (2019). Projection of future precipitation extremes across the Bangkok metropolitan region. Heliyon. 5: 5. e01678.
- 30. Garnier, E., and Laurent, G. (1994). Leaf anatomy, specific mass and water content in congeneric annual and perennial grass species. New Phytologist. 128: 4. 725–736.
- Barr, H.D., & Weatherley, P.E. (1962). A reexamination of the relative turgidity technique for estimating water deficit in leaves. Australian J. of Biological Sciences. 15: 413–428.
- Tor-ngern, P., Chart-asa, C., Chanthorn, W., Rodtassana, C., Yampum, S., Unawong, W., Nathalang, A., Brockelman, W., Srinoppawan, K., & Chen, Y., et al. (2021). Variation of leaf-level gas exchange rates and leaf functional traits of dominant trees across three successional stages in a Southeast Asian tropical forest. Forest Ecology and Management. 489: 119101.
- Brooker, R., Brown, L.K., George, T.S., Pakeman, R.J., Palmer, S., Ramsay, L., Schöb, C., Schurch, N., & Wilkinson, M.J. (2022). Active and adaptive plasticity in a changing climate. Trends in Plant Science. 27: 7. 717-728.
- Li, Y., Reich, P.B., Schmid, B., Shrestha, N., Feng, X., Lyu, T., Maitner, B.S., Xu, X., Li, Y., Zou, D., Tan, Z.H., Su, X., Tang, Z., Guo, Q., Feng, X., Enquist, B.J., Wang, Z., & Morin, X. (2020b). Leaf size of woody dicots predicts ecosystem primary productivity. Ecology Letters. 23: 6. 1003–1013.
- Diaz, S., Cabido, M., & Casanoves, F. (1998). Plant functional traits and environmental filters at a regional scale. J. of Vegetation Science. 9: 113–122.
- Costa-Saura, J.M., Martínez-Vilalta, J., Trabucco, A., Spano, D., & Mereu, S. (2016). Specific leaf area and hydraulic traits explain niche segregation along an aridity gradient in Mediterranean woody species. Perspectives in Plant Ecology, Evolution and Systematics. 21: 23–30.
- Guittar, J., Goldberg, D., Klanderud, K., Telford, R. J., & Vandvik, V. (2016). Can trait patterns along gradients predict plant community responses to climate change? Ecology. 97: 10. 2791–2801.
- Michaletz, S.T., Weiser, M.D., McDowell, N.G., Zhou, J., Kaspari, M., Helliker, B.R., & Enquist, B.J. (2016). The energetic and carbon economic origins of leaf thermoregulation. Nature Plants. 2: 1–9.
- Niinemets, Ü., & Fleck, S. (2002). Petiole mechanics, leaf inclination, morphology, and investment in support in relation to light availability in the canopy of Liriodendron tulipifera. Oecologia. 132: 21–33.
- Puglielli, G., Crescente, M.F., Frattaroli, A.R., & Gratani, L. (2015). Leaf mass per area (LMA) as a possible predictor of adaptive strategies in two species of Sesleria (Poaceae): Analysis of morphological, anatomical and physiological leaf traits. Annales Botanici Fennici. 52: 135–143.
- Niklas, K.J., Cobb, E.D., Niinemets, Ü., Reich, P.B., Sellin, A., Shipley, B., & Wright, I.J. (2007). ‘Diminishing returns’ in the scaling of functional leaf traits across and within species groups. Proceedings of the National Academy of Sciences USA. 104: 8891–8896.
- Pan, S., Liu, C., Zhang, W.P., Xu, S.S., Wang, N., & Li, Y., et al. (2013). The scaling relationships between leaf mass and leaf area of vascular plant species change with altitude. PLoS ONE. 8: e76872.
43.Sun, J., Fan, R.R., Niklas, K.J., Zhong, Q.L., Yang, F.C., & Li, M., et al. (2017). “Diminishing returns” in the scaling of leaf area vs. dry mass in Wuyi Mountain bamboos. Southeast China. American J. of Botany. 104: 993–998.
- Mclean, E.H., Prober, S.M., Stock, W.D., Steane, D.A., Potts, B.M., Vaillancourt, R.E., & Byrne, M. (2014). Plasticity of functional traits varies clinally along a rainfall gradient in Eucalyptus tricarpa. Plant, Cell & Environment. 37: 1440–1451.
- Woodward, F.I. (1987). Climate and Plant Distribution. Cambridge University Press.
- Kergoat, L. (1998). A model for hydrological equilibrium of leaf area index on a global scale. J. of Hydrology. 212: 268–286.
- Smith, W.K., Vogelmann, T.C., DeLucia, E.H., Bell, D.T., & Shepherd, K.A. (1997). Leaf form and photosynthesis: Do leaf structure and orientation interact to regulate internal light and carbon dioxide? BioScience. 47: 785–793.
- von Arx, G., Archer, S.R., & Hughes, M.K. (2012). Long-term functional plasticity in plant hydraulic architecture in response to supplemental moisture. Annals of Botany. 109: 1091–1100.
- de la Riva, E.G., Olmo, M., Poorter, H., Ubera, J.L., & Villar, R. (2016). Leaf mass per area (LMA) and its relationship with leaf structure and anatomy in 34 Mediterranean woody species along a water availability gradient. PLoS ONE. 11: 2. e0148788.
- Dawson, T.E., and Goldsmith, G.R. The value of wet leaves. New Phytol. 2018. 219: 1156–1169.
- Huang, W.W., Ratkowsky, D.A., Hui, C., Wang, P., Su, J.L., & Shi, P.J. (2019a). Leaf fresh weight versus dry weight: which is better for describing scaling relationship between leaf biomass and leaf area for broad-leaved plants? Forests. 10: 256.
- Huang, W.W., Reddy, G.V.P., Li, Y.Y., Larsen, J.B., & Shi, P.J. (2020). Increase in absolute leaf water content tends to keep pace with that of leaf dry mass: Evidence from bamboo plants. Symmetry. 12: 1345.
- Wang, R.M., He, N.P., Li, S.G., Xu, L., & Li, M.X. (2021). Spatial variation and mechanisms of leaf water content in grassland plants at the biome scale: Evidence from three comparative transects. Scientific Reports. 11: 9281.
- Damián, X., Fornoni, J., Domínguez, C.A., & Boege, K. (2018). Ontogenetic changes in the phenotypic integration and modularity of leaf functional traits. Functional Ecology, 32, 234–246.
- Zhu, K., Wang, A., Wu, J., Yuan, F., Guan, D., Jin, C., Zhang, Y., & Gong, C. (2020). Effects of nitrogen additions on mesophyll and stomatal conductance in Manchurian ash and Mongolian oak. Scientific Reports. 10: 10038.
- Mao, Q., Lu, X., Mo, H., Gundersen, P., & Mo, J. (2018). Effects of simulated N deposition on foliar nutrient status, N metabolism and photosynthetic capacity of three dominant understory plant species in a mature tropical forest. Science of the Total Environment. Pp: 610–611, Pp: 555–562.
- Liu, N., Zhang, S., Huang, Y., Wang, J., & Cai, H. (2020). Canopy and understory additions of nitrogen change the chemical composition, construction cost, and payback time of dominant woody species in an evergreen broadleaved forest. Science of the Total Environment. 727: 138738.
- Haghighatdoust, A., Azadfar, D. & Shahriyari, B. (2023). Changes in the geometrical morphology of Fagus orientalis leaves in the altitudinal gradient. J. of Wood and Forest Science and Technology.30: 1. 45-65. doi: 10.22069/jwfst.2023.20740.1990.
- Farokhi, N., AZADFAR, D., and Saeedi, Z. (2024). A comparison of physiological and morphological responses of Populus deltoides clones to different Watering Regimes. J. of Wood and Forest Science and Technology. 31: 1. 63-93. doi: 10.22069/jwfst.2024.22026.2051
- Gorn´e, L.D., Díaz, S., Minden, V., Onoda, Y., Kramer, K., Muir, C., Michaletz, S.T., Lavorel, S., Sharpe, J., Jansen, S., Slot, M., Chacon, E., & Boenisch, G. (2022). The acquisitive–conservative axis of leaf trait variation emerges even in homogeneous environments. Annals of Botany. 129: 709–722.
- Gonzalez-Rodriguez, D., Cournède, P.H., & de Langre, E. (2016). Turgidity-dependent petiole flexibility enables efficient water use by a tree subjected to water stress. J. of Theoretical Biology. 398: 7. 20–31.
|