- Yuan, X., Xue, N., & Han, Z. (2021). A meta-analysis of heavy metals pollution in farmland and urban soils in China over the past 20 years. Journal of Environmental Sciences, 101, 217-226. https://doi.org/10.1016/j.jes.2020.08.013
- Tang, J., Zhang, L., Zhang, J., Ren, L., Zhou, Y., Zheng, Y., ... & Chen, A. (2020). Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost. Science of the Total Environment, 701, 134751. https://doi.org/10.1016/j.scitotenv.2019.134751
- Liu, J., Yin, M., Luo, X., Xiao, T., Wu, Z., Li, N., ... & Chen, Y. (2019). The mobility of thallium in sediments and source apportionment by lead isotopes. Chemosphere, 219, 864-874. https://doi.org/10.1016/j.chemosphere.2018.12.041
- Hua, S., Gong, J. L., Zeng, G. M., Yao, F. B., Guo, M., & Ou, X. M. (2017). Remediation of organochlorine pesticides contaminated lake sediment using activated carbon and carbon nanotubes. Chemosphere, 177, 65-76. https://doi.org/10.1016/j.chemosphere.2017.02.133
- Wang, L., Chen, L., Tsang, D. C., Kua, H. W., Yang, J., Ok, Y. S., ... & Poon, C. S. (2019). The roles of biochar as green admixture for sediment-based construction products. Cement and Concrete Composites, 104, 103348. https://doi.org/10.1016/j.chemosphere.2017.02.133
- Zhang, B., Jin, Y., Yu, Y., Chen, S., & Chen, G. (2023). Biochar with enhanced performance prepared from bio-regulated lignocellulose for efficient removal of organic pollutants from wastewater. Journal of Environmental Chemical Engineering, 11(5), 110526. https://doi.org/10.1016/j.jece.2023.110526
- Xiao, Z., Rasmann, S., Yue, L., Lian, F., Zou, H., & Wang, Z. (2019). The effect of biochar amendment on N-cycling genes in soils: A meta-analysis. Science of the Total Environment, 696, 133984. https://doi.org/10.1016/j.scitotenv.2019.133984
- Raklami, A., Tahiri, A. I., Bechtaoui, N., Pajuelo, E., Baslam, M., Meddich, A., & Oufdou, K. (2021). Restoring the plant productivity of heavy metal-contaminated soil using phosphate sludge, marble waste, and beneficial microorganisms. Journal of Environmental Sciences, 99, 210-221. https://doi.org/10.1016/j.jes.2020.06.032
- Damahe, D., Mayilswamy, N., & Kandasubramanian, B. (2024). Biochar/Metal Nanoparticles-based Composites for Dye Remediation: A Review. Hybrid Advances, 100254. https://doi.org/10.1016/j.hybadv.2024.100254
- Jeyaraj, S. G., Hemavarshini, S., Shree GG, K., & Aravind, J. (2024). Biochar-mediated removal of various pollutants from the environment. Physical Sciences Reviews, (0). https://doi.org/10.1515/psr-2023-0043
- Wu, L. M., Tong, D. S., Li, C. S., Ji, S. F., Lin, C. X., Yang, H. M., ... & Zhou, C. H. (2016). Insight into formation of montmorillonite-hydrochar nanocomposite under hydrothermal conditions. Applied Clay Science, 119, 116-125. https://doi.org/10.1016/j.clay.2015.06.015
- Yao, Y., Gao, B., Fang, J., Zhang, M., Chen, H., Zhou, Y., ... & Yang, L. (2014). Characterization and environmental applications of clay–biochar composites. Chemical Engineering Journal, 242, 136-143. https://doi.org/10.1016/j.cej.2013.12.062
- Liu, X., Yang, L., Zhao, H., & Wang, W. (2020). Pyrolytic production of zerovalent iron nanoparticles supported on rice husk-derived biochar: simple, in situ synthesis and use for remediation of Cr (VI)-polluted soils. Science of the Total Environment, 708, 134479. https://doi.org/10.1016/j.scitotenv.2019.134479
- Hasan, M. S., Geza, M., Vasquez, R., Chilkoor, G., & Gadhamshetty, V. (2020). Enhanced heavy metal removal from synthetic stormwater using nanoscale zerovalent iron–modified biochar. Water, Air, & Soil Pollution, 231, 1-15. https://doi.org/10.1007/s11270-020-04588-w
- Yang, F., Zhang, S., Sun, Y., Cheng, K., Li, J., & Tsang, D. C. (2018). Fabrication and characterization of hydrophilic corn stalk biochar-supported nanoscale zero-valent iron composites for efficient metal removal. Bioresource technology, 265, 490-497. https://doi.org/10.1016/j.biortech.2018.06.029
- Zhou, Y., Gao, B., Zimmerman, A. R., Chen, H., Zhang, M., & Cao, X. (2014). Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions. Bioresource technology, 152, 538-542. https://doi.org/1016/j.biortech.2013.11.021
- Dong, H., Deng, J., Xie, Y., Zhang, C., Jiang, Z., Cheng, Y., ... & Zeng, G. (2017). Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr (VI) removal from aqueous solution. Journal of Hazardous Materials, 332, 79-86. https://doi.org/10.1016/j.jhazmat.2017.03.002
- Murali, M., Gowtham, H. G., Shilpa, N., Singh, S. B., Aiyaz, M., Sayyed, R. Z., ... & Kollur, S. P. (2023). Zinc oxide nanoparticles prepared through microbial mediated synthesis for therapeutic applications: A possible alternative for plants. Frontiers in Microbiology, 14, 1227951. https://doi.org/10.3389/fmicb.2023.1227951
- Tratnyek, P. G., Salter, A. J., Nurmi, J. T., & Sarathy, V. (2010). Environmental applications of zerovalent metals: iron vs. zinc. In Nanoscale Materials in Chemistry: Environmental Applications (pp. 165-178). American Chemical Society.https://doi.org/10.1021/bk-2010-1045.ch009
- Wang, M., Hu, S., Wang, Q., Liang, Y., Liu, C., Xu, H., & Ye, Q. (2021). Enhanced nitrogen and phosphorus adsorption performance and stabilization by novel panda manure biochar modified by CMC stabilized nZVZ composite in aqueous solution: Mechanisms and application potential. Journal of Cleaner Production, 291, 125221. https://doi.org/10.1016/j.jclepro.2020.125221
- Ahmadi, M., Akhbarizadeh, R., Haghighifard, N. J., Barzegar, G., & Jorfi, S. (2019). Geochemical determination and pollution assessment of heavy metals in agricultural soils of south western of Iran. Journal of Environmental Health Science and Engineering, 17, 657-669. https://doi.org/10.1007/s40201-019-00379-6
- Ahmadi Doabi, S., Karami, M., & Afyuni, M. (2019). Heavy metal pollution assessment in agricultural soils of Kermanshah province, Iran. Environmental Earth Sciences, 78(3), 70. https://doi.org/10.1007/s12665-019-8093-7
- Kong, X., Liu, Y., Pi, J., Li, W., Liao, Q., & Shang, J. (2017). Low-cost magnetic herbal biochar: characterization and application for antibiotic removal. Environmental Science and Pollution Research, 24, 6679-6687. https://doi.org/10.1007/s11356-017-8376-z
- Ramola, S., Belwal, T., Li, C. J., Wang, Y. Y., Lu, H. H., Yang, S. M., & Zhou, C. H. (2020). Improved lead removal from aqueous solution using novel porous bentonite-and calcite-biochar composite. Science of the Total Environment, 709, 136171. https://doi.org/10.1007/s11356-017-8376-z
- Khademi Jolgeh Nezhad, A. B. O. L. F. A. Z. L., & Fekri, M. (2023). Investigating the efficiency of pistachio pulp biomass and the produced biochar at two different temperatures in removing cadmium from aqueous solution. Iranian Journal of Soil and Water Research, 54(7),1115-1129.[In Persian] https://doi.org/22059/ijswr.2023.357290.669475
- Cantrell, K. B., Hunt, P. G., Uchimiya, M., Novak, J. M., & Ro, K. S. (2012). Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource technology, 107, 419-428. https://doi.org/10.1016/j.biortech.2011.11.084
- Gee, G. W., Bauder, J. W., & Klute, A. (1986). Methods of soil analysis, part 1, physical and mineralogical methods. Soil Science Society of America, American Society of Agronomy, 5. https://doi.org/10.2136/sssabookser5.1.2ed
- Thomas, G. W. (1996). Soil pH and soil acidity. Methods of soil analysis: part 3 chemical methods, 5, 475-490. https://doi.org/10.2136/sssabookser5.3.c16
- Rhoades, J. D. (1996). Salinity: Electrical conductivity and total dissolved solids. Methods of soil analysis: Part 3 Chemical methods, 5, 417-435. https://doi.org/10.2136/sssabookser5.3.c14
- Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 2 chemical and microbiological properties, 9, 539-579. https://doi.org/10.2134/agronmonogr9.2.2ed.c29
- Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate(No. 939). US Department of Agriculture.
- Bremner, J. M. (1996). Nitrogen-total. Methods of soil analysis. Part, 3, 1085-1121. https://doi.org/10.2136/sssabookser5.3.c37
- Chapman, H. D., & Pratt, P. F. (1962). Methods of analysis for soils, plants and waters. Soil Science, 93(1), 68.https://doi.org/1097/00010694-196201000-00015
- Sparks, D. L., Page, A. L., Helmke, P. A., & Loeppert, R. H. (Eds.). (2020). Methods of soil analysis, part 3: Chemical methods(Vol. 14). John Wiley & Sons. https://doi.org/2136/sssabookser5.3
- Lindsay, W. L., & Norvell, W. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil science society of America journal, 42(3), 421-428. https://doi.org/10.2136/sssaj1978.03615995004200030009x
- Razmi, B., Ghasemi-Fasaei, R., Ronaghi, A., & Mostowfizadeh-Ghalamfarsa, R. (2021). Investigation of factors affecting phytoremediation of multi-elements polluted calcareous soil using Taguchi optimization. Ecotoxicology and Environmental Safety, 207, 111315. https://doi.org/10.1016/j.ecoenv.2020.111315
- Rafique, M. I., Usman, A. R., Ahmad, M., & Al-Wabel, M. I. (2021). Immobilization and mitigation of chromium toxicity in aqueous solutions and tannery waste-contaminated soil using biochar and polymer-modified biochar. Chemosphere, 266, 129198. https://doi.org/10.1016/j.chemosphere.2020.129198
- Yu, H., Hou, J., Dang, Q., Cui, D., Xi, B., & Tan, W. (2020). Decrease in bioavailability of soil heavy metals caused by the presence of microplastics varies across aggregate levels. Journal of hazardous materials, 395, 122690. https://doi.org/10.1016/j.jhazmat.2020.122690
- Dang, Y. P., Dalal, R. C., Edwards, D. G., & Tiller, K. G. (1994). Kinetics of zinc desorption from Vertisols. Soil Science Society of America Journal, 58(5), 1392-1399. https://doi.org/10.2136/sssaj1994.03615995005800050016x
- Zhou, H., Ye, M., Zhao, Y., Baig, S. A., Huang, N., & Ma, M. (2022). Sodium citrate and biochar synergistic improvement of nanoscale zero-valent iron composite for the removal of chromium (Ⅵ) in aqueous solutions. Journal of Environmental Sciences, 115, 227-239. https://doi.org/10.1016/j.jes.2021.05.044
- Cimirro, N. F., Lima, E. C., Cunha, M. R., Thue, P. S., Grimm, A., dos Reis, G. S., ... & Habibzadeh, S. (2022). Removal of diphenols using pine biochar. Kinetics, equilibrium, thermodynamics, and mechanism of uptake. Journal of Molecular Liquids, 364, 119979. https://doi.org/10.1016/j.molliq.2022.119979
- Parlayıcı, Ş., & Pehlivan, E. (2019). Fast decolorization of cationic dyes by nano-scale zero valent iron immobilized in sycamore tree seed pod fibers: kinetics and modelling study. International Journal of Phytoremediation, 21(11), 1130-1144. https://doi.org/10.1080/15226514.2019.1606786
- Sahu, U. K., Ji, W., Liang, Y., Ma, H., & Pu, S. (2022). Mechanism enhanced active biochar support magnetic nano zero-valent iron for efficient removal of Cr (VI) from simulated polluted water. Journal of Environmental Chemical Engineering, 10(2), 107077. https://doi.org/10.1016/j.jece.2021.107077
- Zhang, J., Huang, B., Chen, L., Du, J., Li, W., & Luo, Z. (2018). Pyrolysis kinetics of hulless barley straw using the distributed activation energy model (DAEM) by the TG/DTA technique and SEM/XRD characterizations for hulless barley straw derived biochar. Brazilian Journal of Chemical Engineering, 35, 1039-1050. https://doi.org/10.1590/0104-6632.20180353s20170382
- Pusceddu, E., Montanaro, A., Fioravanti, G., Santilli, S. F., Foscolo, P. U., Criscuoli, I., ... & Miglietta, F. (2017). Comparison between ancient and fresh biochar samples, a study on the recalcitrance of carbonaceous structures during soil incubation. Int. J. New Technol. Res, 3, 39-46.
- Shah, N. S., Khan, J. A., Sayed, M., Khan, Z. U. H., Iqbal, J., Imran, M., ... & Polychronopoulou, K. (2020). Nano zerovalent zinc catalyzed peroxymonosulfate based advanced oxidation technologies for treatment of chlorpyrifos in aqueous solution: A semi-pilot scale study. Journal of Cleaner Production, 246, 119032. https://doi.org/10.1016/j.jclepro.2019.119032
- Fathi Dokht, H., Dordipour, E., & Movahedi Naeini, S. A. (2017). Adsorption and desorption of lead in Iranian acid and alkaline soils amended with sewage sludge-derived biochar. Journal of Advances in Environmental Health Research, 5(2), 59-69. https://doi.org/ 22102/jaehr.2017.71682
- Saffari, M., Vahidi, H., & Moosavirad, S. M. (2020). Effects of pristine and engineered biochars of pistachio-shell residues on cadmium behavior in a cadmium-spiked calcareous soil. Archives of Agronomy and Soil Science, 66(7), 942-956. https://doi.org/10.1080/03650340.2019.1648791
- Kabiri, P., Motaghian, H., & Hosseinpur, A. (2021). Impact of biochar on release kinetics of Pb (II) and Zn (II) in a calcareous soil polluted with mining activities. Journal of Soil Science and Plant Nutrition, 21(1), 22-34. https://doi.org/10.1007/s42729-020-00336-5
- Ghasemi-Fasaei, R., Paridar, Z., & Ronaghi, A. (2021). The role of low molecular weight organic acids in release kinetics of zinc and cadmium in polluted calcareous soil in the presence of fish scales Chemistry and Ecology, 37(1), 50-63. https://doi.org/10.1080/02757540.2020.1849153
- Boostani, H. R., Najafi-Ghiri, M., Amin, H., & Mirsoleimani, A. (2019). Zinc desorption kinetics from some calcareous soils of orange (Citrus sinensis L.) orchards, southern Iran. Soil science and plant nutrition, 65(1), 20-27. https://doi.org/10.1080/02757540.2020.1849153
- Zahedifar, M., & Moosavi, A. A. (2017). Modeling desorption kinetics of the native and applied zinc in biochar-amended calcareous soils of different land uses. Environmental Earth Sciences, 76, 1-11. https://doi.org/10.1007/s12665-017-6895-z
- Ghasemi‐Fasaei, R., Maftoun, M., Ronaghi, A., Karimian, N., Yasrebi, J., Assad, M. T., & Ippolito, J. A. (2006). Kinetics of copper desorption from highly calcareous soils. Communications in Soil Science and Plant Analysis, 37(05-06), 797-809. https://doi.org/10.1080/00103620600564067
- Sun, J., Cui, L., Quan, G., Yan, J., Wang, H., & Wu, L. (2020). Effects of biochar on heavy metals migration and fractions changes with different soil types in column experiments. BioResources, 15(2), 4388. https://doi.org/15376/biores.15.2.4388-4406
- Aborisade, M. A., Feng, A., Zheng, X., Oba, B. T., Kumar, A., Battamo, A. Y., ... & Zhao, L. (2022). Carbothermal reduction synthesis of eggshell-biochar modified with nanoscale zerovalent iron/activated carbon for remediation of soil polluted with lead and cadmium. Environmental Nanotechnology, Monitoring & Management, 18, 100726. https://doi.org/10.1016/j.enmm.2022.100726
- Ji, M. Y., Hu, Y. W., Liang, C., Sang, W. J., & Li, D. X. (2020). Adsorption of lead and cadmium on biochars produced from agroforestry wastes. https://doi.org/10.1016/j.enmm.2022.100726
- Liu, S. J., Liu, Y. G., Tan, X. F., Zeng, G. M., Zhou, Y. H., Liu, S. B., ... & Wen, J. (2018). The effect of several activated biochars on Cd immobilization and microbial community composition during in-situ remediation of heavy metal contaminated sediment. Chemosphere, 208, 655-664. https://doi.org/10.1016/j.chemosphere.2018.06.023
- Ok, Y. S., Yang, J. E., Zhang, Y. S., Kim, S. J., & Chung, D. Y. (2007). Heavy metal adsorption by a formulated zeolite-Portland cement mixture. Journal of Hazardous Materials, 147(1-2), 91-96. https://doi.org/10.1016/j.jhazmat.2006.12.046
- Almaroai, Y. A., Usman, A. R., Ahmad, M., Kim, K. R., Vithanage, M., & Sik Ok, Y. (2013). Role of chelating agents on release kinetics of metals and their uptake by maize from chromated copper arsenate-contaminated soil. Environmental technology, 34(6), 747-755. https://doi.org/10.1080/09593330.2012.715757
- Azeem, M., Ali, A., Jeyasundar, P. G. A., Bashir, S., Hussain, Q., Wahid, F., ... & Zhang, Z. (2021). Effects of sheep bone biochar on soil quality, maize growth, and fractionation and phytoavailability of Cd and Zn in a mining-contaminated soil. Chemosphere, 282, 131016. https://doi.org/10.1016/j.chemosphere.2021.131016
- Li, P., Yu, J., Huangfu, Z., Chang, J., Zhong, C., & Ding, P. (2020). Applying modified biochar with nZVI/nFe 3 O 4 to immobilize Pb in contaminated soil. Environmental Science and Pollution Research, 27, 24495-24506. https://doi.org/10.1007/s11356-020-08458-0
- Mu, Y., Jia, F., Ai, Z., & Zhang, L. (2017). Iron oxide shell mediated environmental remediation properties of nano zero-valent iron. Environmental Science: Nano, 4(1), 27-45. https://doi.org/1039/C6EN00398B
- Xu, R. K., & Zhao, A. Z. (2013). Effect of biochars on adsorption of Cu (II), Pb (II) and Cd (II) by three variable charge soils from southern China. Environmental Science and Pollution Research, 20, 8491-8501. https://doi.org/10.1007/s11356-013-1769-8
- Shirvani, M., Shariatmadari, H., & Kalbasi, M. (2007). Kineticsof cadmium desorption from fibrous silicate clay minerals: Influence of organic ligands and aging. Applied Clay Science, 37(1-2), 175-184. https://doi.org/10.1016/j.clay.2006.12.010
- Wang, G., Zhou, Y., Wang, X., Chai, X., Huang, L., & Deng, N. (2010). Simultaneous removal of phenanthrene and lead from artificially contaminated soils with glycine-β-cyclodextrin. Journal of hazardous materials, 184(1-3), 690-695. https://doi.org/10.1016/j.clay.2006.12.010
- Hafeznezami, S., Zimmer-Faust, A. G., Dunne, A., Tran, T., Yang, C., Lam, J. R., ... & Jay, J. A. (2016). Adsorption and desorption of arsenate on sandy sediments from contaminated and uncontaminated saturated zones: kinetic and equilibrium modeling. Environmental Pollution, 215, 290-301. https://doi.org/10.1016/j.envpol.2016.05.029
- Kandpal, G., Srivastava, P. C., & Ram, B. (2005). Kinetics of desorption of heavy metals from polluted soils: Influence of soil type and metal source. Water, Air, and Soil Pollution, 161, 353-363. https://doi.org/10.1007/s11270-005-5548-0
- Wei, Y., Liang, X., Lin, W., Guo, C., & Dang, Z. (2015). Clay mineral dependent desorption of pyrene from soils by single and mixed anionic–nonionic surfactants. Chemical engineering journal, 264, 807-814. https://doi.org/10.1016/j.cej.2014.12.019
- Rashti, M. R., Esfandbod, M., Adhami, E., & Srivastava, P. (2014). Cadmium desorption behaviour in selected sub-tropical soils: Effects of soil properties. Journal of Geochemical Exploration, 144, 230-236. https://doi.org/10.1016/j.gexplo.2014.01.023
|