
تعداد نشریات | 13 |
تعداد شمارهها | 642 |
تعداد مقالات | 6,703 |
تعداد مشاهده مقاله | 9,254,565 |
تعداد دریافت فایل اصل مقاله | 8,660,029 |
نقش کود نیتروژن و بسترهای مختلف بذر در مدیریت تلفیقی علفهای هرز گندم در شرایط آب و هوایی خوزستان | ||
مجله تولید گیاهان زراعی | ||
دوره 18، شماره 1، فروردین 1404، صفحه 113-132 اصل مقاله (1.75 M) | ||
نوع مقاله: مقاله کامل علمی- پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/ejcp.2025.23209.2661 | ||
نویسندگان | ||
اسداله عبابافیان1؛ احمد زارع* 2؛ الهام الهی فرد3؛ محمد رضا مرادی تلاوت3 | ||
1دانش آموخته کارشناسی ارشد علوم علفهای هرز، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، باوی، ملاثانی، ایران. | ||
2دانشیار، گروه مهندسی تولید و ژنتیک گیاهی-دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، باوی، ملاثانی، ایران. | ||
3دانشیار، گروه مهندسی تولید و ژنتیک گیاهی-دانشکده کشاورزی،دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، باوی، ملاثانی، ایران. | ||
چکیده | ||
سابقه و هدف: گندم به عنوان یک محصول استراتژیک نقش اساسی در امنیت غذایی کشور دارد. یکی از عوامل مهم کاهش عملکرد گندم وجود علفهایهرز میباشد. به دلیل اتکاء زیاد به روشهای شیمیایی برای مدیریت علفهایهرز گندم، پدیده بروز مقاومت علفهایهرز به علفکشها منجر به یک چالش بزرگ شده است. در مدیریت تلفیقی علفهایهرز، روشهای زراعی میتواند در کاهش بانک بذر و همچنین مهار علفهایهرز موثر باشد. استفاده از روشهای زراعی به مانند مدیریت کود به خصوص نیتروژن و همچنین بستر بذر (دروغین و کاذب) میتواند راهگشا باشد. هدف از انجام این تحقیق ارزیابی سطوح مختلف کود و بسترهای بذر بر وزن خشک علفهایهرز، عملکرد و اجزای عملکرد گندم در شرایط آب و هوایی خوزستان میباشد. مواد و روشها: آزمایش به صورت اسپلیتپلات (کرتهای خرد شده) در قالب طرح بلوکهای کامل تصادفی با سه تکرار انجام شد. سیستمهای مختلف بستر بذر شامل 1- تهیه بستر بذر کشت مرسوم (آمادهسازی بستر بذر شامل شخم، دیسک، ماله و کاشت در هفته دوم آذرماه)، 2- بستر بذر دروغین (بستر با پشتههای دائم) با کاربرد علفکش پاراکوات 4 لیتر در هکتار، 3- بستر بذر دروغین با کاربرد علفکش گلایفوسیت 6 لیتر در هکتار، 4- بستر بذر دروغین با کاربرد شعلهافکن، 5- بستر بذر کاذب (بستر با پشتههای غیردائم) با کولتیواتور (کولتیواتور از نوع تیلر) و کرت فرعی شامل سطوح مختلف کود نیتروژن (صفر، 100، 200 و 300 کیلوگرم در هکتار از اوره 46 درصد به ترتیب معادل صفر، 46، 92 و 138 کیلوگرم در هکتار نیتروژن خالص) بود. یافتهها: نتایج تحقیق نشان داد که بین بسترهای بذر و سطوح مختلف کود نیتروژن بر وزن خشک علفهایهرز اختلاف معنیداری مشاهده گردید. بیشترین وزن خشک کل علفهایهرز (96/73 گرم در مترمربع) در شرایط کاربرد 300 کیلوگرم در هکتار در بستر بذر دروغین در شرایط کاربرد شعله افکن و کمترین وزن خشک کل علفهایهرز(37/6 گرم در مترمربع) در سطح کود 100 کیلوگرم در هکتار در بستر بذر دروغین به همراه کاربرد پاراکوات مشاهده گردید. همچنین نتایج نشان داد که بیشترین تعداد دانه در سنبله (5/49) در کشت مرسوم با کاربرد 200 کیلوگرم در هکتار و کمترین تعداد دانه در سنبله (31) در بستر بذر دروغین و با استفاده از شعله افکن در شرایط عدم کاربرد کود نیتروژن به دست آمد. نتایج مقایسه میانگین اثر ساده سطوح مختلف کود نیتروژن و بسترهای مختلف بذر بر وزن هزار دانه نشان داد که بیشترین وزن هزار دانه (30/41 گرم) در کشت مرسوم و در بین سطوح مختلف کود نیتروژن بیشترین وزن هزار دانه (27/40 گرم) به سطح کود 300 کیلوگرم در هکتار اختصاص یافت. بیشترین عملکرد دانه گندم (5249 کیلوگرم در هکتار) در کشت مرسوم و کاربرد 300 کیلوگرم کود نیتروژن و کمترین عملکرد دانه (2852 کیلوگرم در هکتار) در بستر بذر دروغین و استفاده از شعله افکن در شرایط کاربرد کود نیتروژن 300 کیلوگرم در هکتار مشاهده گردید. نتایج تحقیق حاضر نشان داد که بسترهای مختلف بذر به خصوص بستر بذر دروغین همراه با کاربردگلایفوسیت و پاراکوات در کاهش ماده خشک تولید علفهایهرز نسبت به کولتیواتور و شعله افکن موفقتر بودند، اما با توجه به تاخیر کشت در بستر بذر دروغین و مصادف شدن مرحله زایشی و پرشدن دانه با تنش گرما، تعداد دانه در سنبله و وزن هزار دانه کاهش چشمگیری داشت. نتیجهگیری: نتایج این تحقیق نشان داد که در شرایط عدم کنترل مناسب علفهایهرز (شعله افکن)، سطوح بالاتر کود نیتروژن به مانند 300 کیلوگرم در هکتار منجر به افزایش شدید وزن خشک علفهایهرز و کاهش صفات گندم گردید. کشت به موقع و مدیریت مقدار کود مصرفی میتواند در افزایش توان رقابتی گندم در برابر علفهایهرز به عنوان یک ابزار غیرشیمیایی در مدیریت تلفیقی علفهایهرز مورد توجه قرار گیرد. | ||
کلیدواژهها | ||
تعداد دانه در سنبله؛ وزن هزار دانه؛ وزن خشک علفهای هرز؛ مدیریت زراعی؛ گلایفوسیت | ||
مراجع | ||
1.Adeux, G., Vieren, E., Carlesi, S., Bàrberi, P., Munier-Jolain, N., & Cordeau, S. (2019). Mitigating crop yield losses through weed diversity. Nature Sustainability, 2(11), 1018-1026.
2.Gan, H., Emmett, B.D., & Drinkwater, L.E. (2021). Soil management legacy alters weed-crop competition through biotic and abiotic pathways. Plant and Soil, 462, 543-560.
3.Schimel, J.P., & Bennett, J. (2004). Nitrogen mineralization: challenges of a changing paradigm. Ecology, 85(3), 591-602.
4.Beheshtian, M., Rahimain, H., Alizadeh, H., Ohadi, S., & Zare, A. (2013). Modeling the Germination Responses of Wild Barley (Hordeum spontaneum) and Littleseed CannaryGrass (Phalaris minor) to Temperature. Iranian Journal of Weed Science, 9(2), 105-118. [In Persian].
5.Smith, R.G., Mortensen, D.A., & Ryan, M.R. (2010). A new hypothesis for the functional role of diversity in mediating resource pools and weed–crop competition in agro ecosystems. Weed Research, 50(1), 37-48.
6.Hawkesford, M.J. (2014). Reducing the reliance on nitrogen fertilizer for wheat production. Journal of Cereal Science, 59(3), 276-283.
7.Anas, M., Liao, F., Verma, K.K., Sarwar, M.A., Mahmood, A., Chen, Z.L., Liu, Y. & Li, Y.R. (2020). Fate of nitrogen in agriculture and environment: agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biological Research, 53, 1-20.
8.Holman, J. D., Haag, L. A., Schlegel, A. J., & Assefa, Y. (2021). Yield components of dry land winter wheat genotypes and response to seeding rate. Agronomy Journal, 113(2), 1776-1791.
9.Wang, D., Xu, Z., Zhao, J., Wang, Y., & Yu, Z. (2011). Excessive nitrogen application decreases grain yield and increases nitrogen loss in a wheat–soil system. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 61(8), 681-692.
10.Whetton, R. L., Harty, M. A., & Holden, N. M. (2022). Communicating nitrogen loss mechanisms for improving nitrogen use efficiency management, focused on global wheat. Nitrogen, 3(2), 213-246.
11.Benvenuti, S., Selvi, M., Mercati, S., Cardinali, G., Mercati, V., & Mazzoncini, M. (2021). Stale seedbed preparation for sustainable weed seed bank management in organic cropping systems. Scientia Horticulturae, 289, 110453.
12.Rasmussen, I. A. (2004). The effect of sowing date, stale seedbed, row width and mechanical weed control on weeds and yields of organic winter wheat. Weed Research, 44(1), 12-20.
13.Merfield, C. N. (2015). False and Stale Seedbeds: The most effective non-chemical weed management tools for cropping and pasture establishment. The FFC Bulletin, (V4), 25.
14.Boyd, N. S., Brennan, E. B., & Fennimore, S. A. (2006). Stale seedbed techniques for organic vegetable production. Weed Technology, 20(4), 1052-1057.
15.Benvenuti, S., & Mazzoncini, M. (2018). Soil physics involvement in the germination ecology of buried weed seeds. Plants, 8(1), 7.
16.Gardarin, A., Dürr, C., & Colbach, N. (2011). Prediction of germination rates of weed species: Relationships between germination speed parameters and species traits. Ecological Modelling, 222(3), 626-636.
18.Senthilkumar, D., Chinnusamy, C., Bharathi, C., & Lavanya, Y. (2019). Stale seed bed techniques as successful weed management practice. Journal of Pharmacognosy and Phytochemistry, 8(2S), 120-123.
19.Nalayini, P., Blaise, D., & Mundafale, H. (2023). Stale seed bed technique and leguminous cover crops as components of integrated weed management in irrigated cotton. Indian Journal of Weed Science, 55(1), 46–49.
21.Ludwig, F., & Asseng, S. (2006). Climate change impacts on wheat production in a Mediterranean environment in Western Australia. Agricultural Systems, 90(1-3), 159-179.
21.Waongo, M., Laux, P., & Kunstmann, H. (2015). Adaptation to climate change: The impacts of optimized planting dates on attainable maize yields under rainfed conditions in Burkina Faso. Agricultural and Forest Meteorology, 205, 23-39.
22.Fang, Q., Zhang, X., Chen, S., Shao, L., & Sun, H. (2017). Selecting traits to increase winter wheat yield under climate change in the North China Plain. Field Crops Research, 207, 30-41.
23.Yadav, P., Kurchania, S., & Tiwari, J. (1995). Herbicide and fertilizer compatibility under normal and stale seedbed sowing of wheat (Triticum aestivum) at different levels of nitrogen. The Indian Journal of Agricultural Sciences, 65(4).265-270.
24.Singh, M., Bhullar, M.S., & Gill, G. (2018). Integrated weed management in dry-seeded rice using stale seedbeds and post sowing herbicides. Field Crops Research, 224, 182-191.
254.Kanatas, P., Travlos, I., Gazoulis, J., Antonopoulos, N., Tsekoura, A., Tataridas, A., et al. (2020). The combined effects of false seedbed technique, post-emergence chemical control and cultivar on weed management and yield of barley in Greece. Phytoparasitica, 48, 131-143.
26.Klauk, B., & Petersen, J. (2023). The potential of glyphosate-alternatives like electro physical weeding in the stale seedbed method for Alopecurus myosuroides (Huds.) control. Plant, Soil & Environment, 69(11).
27.Nasiri, A., Ghadiri, H., & Kazemeini, S.A. (2015). Interaction effects of nitrogen fertilizer and nicosulfuron+ rimsulfuron herbicide on weed control in grain corn. Iranian Journal of Weed Science, 11(1), 51-60. [In Persian].
28.Zare, A., Alizadeh, H., Beheshtian Mesgaran, M., & Rahimian Mashahadi, H. (2009). The responses of corn weeds to nitrogen fertilizer rates and herbicide dosages. Iranian Journal of Weed Science, 4(2), 21-32. [In Persian].
29.Lanie, A.J., Griffin, J. L., Vidrine, P.R., & Reynolds, D.B. (1994). Weed control with non-selective herbicides in soybean (Glycine max) stale seedbed culture. Weed Technology, 8(1), 159-164.
30.Travlos, I., Gazoulis, I., Kanatas, P., Tsekoura, A., Zannopoulos, S., & Papastylianou, P. (2020). Key factors affecting weed seeds' germination, weed emergence, and their possible role for the efficacy of false seedbed technique as weed management practice. Frontiers in Agronomy, 2 (1), 1-9.
31.Myers, M.W., Curran, W.S., Vangessel, M.J., Majek, B.A., Mortensen, D.A., Calvin, D.D., Karsten, H.D. & Roth, G. W. (2005). Effect of soil disturbance on annual weed emergence in the northeastern United States. Weed Technology, 19(2), 274-282.
32.Schutte, B., Tomasek, B., Davis, A., Andersson, L., Benoit, D., Cirujeda, A., et al. (2014). An investigation to enhance understanding of the stimulation of weed seedling emergence by soil disturbance. Weed Research, 54(1), 1-12.
34.Menegat, A., & Nilsson, A.T.S. (2019). Interaction of preventive, cultural, and direct methods for integrated weed management in winter wheat. Agronomy, 9(9), 564
35.Menegat, A., Jäck, O., Zhang, J., Kleinknecht, K., Müller, B.U., Piepho, H.P., et al. (2013). Japanese Bindweed (Calystegia hederacea) Abundance and Response to Winter Wheat Seeding Rate and Nitrogen Fertilization in the North China Plain. Weed Technology, 27(4), 768-777.
36.Awan, T.H., Sta Cruz, P.C., & Chauhan, B.S. (2015). Ecological significance of rice (Oryza sativa) planting density and nitrogen rates in managing the growth and competitive ability of itchgrass (Rottboellia cochinchinensis) in direct-seeded rice systems. Journal of Pest Science, 88, 427-438.
37.Awan, T.H., Chauhan, B.S., & Cruz, P.C.S. (2014). Physiological and morphological responses of Ischaemum rugosum Salisb. (Wrinkled Grass) to different nitrogen rates and rice seeding rates. PLoS One, 9(6), e98255.
38.Dilipkumar, M., Mohamad-Ghazali, M.S.S., Shari, E.S., Lee Chuen, N., Chauhan, B.S., & Chuah, T.S. (2022). Integrated use of the stale seedbed technique with pre-emergence herbicides to control weedy rice in wet seeded rice. Weed Technology, 36(3), 373-378.
39.Nakachew, K., Assefa, F., & Yigermal, H. (2024). The effect of seed and nitrogen-phosphorous fertilizer rates on growth and yield components of bread wheat (Triticum aestivum L.) in Burie District, Northwestern Ethiopia: Dataset article. Data in Brief, 54, 110308.
40.Sohrabi, M., Mashadi, H.R., & Mohammadi, G.N. (2009). Management of rye (Secale cereale) in wheat (Triticum aestivum L.) field through preparation of false seed bed on different. Research on Crops, 10(3), 500-505.
41.Lachutta, K., & Jankowski, K.J. (2024). An agronomic efficiency analysis of winter wheat at different sowing strategies and nitrogen fertilizer rates: A case study in northeastern Poland. Agriculture, 14(3), 442.
42.Yonas, M.W., Mubeen, K., Irfan, M., Shahzad, M.A., Aziz, M., & Zawar, S. (2023). Influence of herbicides on weeds and wheat (Triticum aestivum) dynamics under stale Seedbed. Sarhad Journal of Agriculture, 39(2), 465-478.
43.Baloch, M., Shah, I., Nadim, M., Khan, M., & Khakwani, A. (2010). Effect of seeding density and planting time on growth and yield attributes of wheat. The Journal of Animal & Plant Sciences, 20(4), 239-240.
44.Feng, H., Fan, X., Miller, A.J., & Xu, G. (2020). Plant nitrogen uptake and assimilation: regulation of cellular pH homeostasis. Journal of Experimental Botany, 71(15), 4380-4392.
45.Hussain, I., Khan, M.A., & Khan, E.A. (2006). Bread wheat varieties as influenced by different nitrogen levels. Journal of Zhejiang University Science B, 7(1), 70-78.
46.Iqbal, J., Hayat, K., Hussain, S., Ali, A., & Bakhsh, M.A.A.H.A. (2012). Effect of seeding rates and nitrogen levels on yield and yield components of wheat (Triticum aestivum L.). Pakistan Journal of Nutrition, 11(7), 531-536.
47.Mohammaddoust Chamanabad, H.R., Hemmati, K., Asghari, A., & Barmaki, M. (2014). Effect of nitrogen and weed interference on some agronomic traits, five cultivars wheat yield and yield components. Journal of Agricultural Science and Sustainable Production, 23(4), 131-140. [In Persian]. | ||
آمار تعداد مشاهده مقاله: 88 تعداد دریافت فایل اصل مقاله: 60 |