- Hudson, A. R., Peters, D. P., Blair, J. M., Childers, D. L., Doran, P. T., Geil, K., Gooseff, M., Gross, K. L., Haddad, N. M., & Pastore, M. A. (2022). Cross-site comparisons of dryland ecosystem response to climate change in the US Long-Term Ecological Research Network. BioScience, 72(9), 889-907. https://doi.org/https://doi.org/10.1093/biosci/biab134
- Ohba, M. (2021). Precipitation under climate change. In Precipitation (pp. 21-51). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-822699-5.00002-1
- Daramola, M. T., & Xu, M. (2022). Recent changes in global dryland temperature and precipitation. International Journal of Climatology, 2, 1267-1282. https://doi.org/https://doi.org/10.1002/joc.7301
- Kheyruri, Y., Neshat, A., Sharafati, A., & Hameed, A. S. (2024). Identifying the most effective climate parameters on crop yield in rain-fed agriculture and irrigated farming in Iran. Physics and Chemistry of the Earth, Parts A/B/C, 136, 103744. https://doi.org/https://doi.org/10.1016/j.pce.2024.103744
- Safdari, Z., Nahavandchi, H., & Joodaki, G. (2022). Estimation of groundwater depletion in Iran’s catchments using well data. Water, 14(1), 131. https://doi.org/https://doi.org/10.3390/w14010131
- Emadodin, I., Reinsch, T., & Taube, F. (2019). Drought and desertification in Iran. Hydrology, 6(3), 66. https://doi.org/10.3390/hydrology6030066
- Bazile, D., Bertero, H. D., & Nieto, C. (2015). State of the Art Report on Quinoa around the World in 2013 (1 ed.). FAO & CIRAD.
- Ruiz, K. B., Biondi, S., Oses, R., Acuña-Rodríguez, I. S., Antognoni, F., Martinez-Mosqueira, E. A., Coulibaly, A., Canahua-Murillo, A., Pinto, M., & Zurita-Silva, A. (2014). Quinoa biodiversity and sustainability for food security under climate change. A review. Agronomy for sustainable development, 34, 349-359. https://doi.org/https://doi.org/10.1007/s13593-013-0195-0
- Geerts, S., Raes, D., Garcia, M., Vacher, J., Mamani, R., Mendoza, J., Huanca, R., Morales, B., Miranda, R., & Cusicanqui, J. (2008). Introducing deficit irrigation to stabilize yields of quinoa (Chenopodium quinoa Willd.). European journal of agronomy, 28(3), 427-436. https://doi.org/10.1016/j.eja.2007.11.008
- Talebnejad, R., & Sepaskhah, A. (2015). Effect of deficit irrigation and different saline groundwater depths on yield and water productivity of quinoa. Agricultural Water Management, 159, 225-238. https://doi.org/10.1016/j.agwat.2015.06.005
- Jokarfard, V., Rabiei, B., Laki, E. S., & Börner, A. (2024). Stability and adaptability of grain yield in quinoa genotypes in four locations of Iran. Frontiers in Plant Science, 15, 1487106. https://doi.org/https://doi.org/10.3389/fpls.2024.1487106
- Bagheri, M., Anafjeh, Z., Taherian, M., Emami, A., Molaie, A., & Keshavarz, S. (2021). Assessment of adaptability and seed yield stability of selected quinoa (Chenopodium quinoa Willd.) genotypes in spring cropping systems in cold and temperate regions of Iran. IRANIAN JOURNAL OF CROP SCIENCES, 22(4), 376-387 [In Persian]. https://doi.org/https://doi.org/10.52547/abj.22.4.376
- Etaati, M., Ardakani, M. R., Bagheri, M., Paknejad, F., & Golzardi, F. (2023). Grain yield adaptability and stability of quinoa (Chenopodium quinoa Willd.) genotypes using different stability indices. Journal of Crop Ecophysiology, 17(65), 1-14 [In Persian]. https://doi.org/https://doi.org/10.30495/JCEP.2023.1935024.1815
- Mamedi, A., Tavakkol Afshari, R., & Oveisi, M. (2017). Cardinal temperatures for seed germination of three quinoa (Chenopodium quinoa Willd.) cultivars. Iranian Journal of Field Crop Science, 48(Special Issue), 89-100 [In Persian]. https://doi.org/https://doi.org/10.22059/ijfcs.2017.206204.654106
- Sigstad, E. E., & Prado, F. E. (1999). A microcalorimetric study of Chenopodium quinoa Willd. seed germination. Thermochimica acta, 326(1-2), 159-164. https://doi.org/https://doi.org/10.1016/S0040-6031(98)00599-1
- Ghorbani, K., & Jamali, S. (2021). The effects of irrigation with different mixture Caspian seawater and fresh water on yield of quinoa (cv Sajama) in greenhouse conditions. Journal of Water and Soil Conservation, 28(2), 63-81 [In Persian]. https://doi.org/https://doi.org/10.22069/jwsc.2021.18372.3397
- Shadmehri, A., & Abbas Dokht, H. (2024). Assessing the Interactive Effects of Priming and Drought Stress on Yield and Selected Growth Characteristics of Three Quinoa (Chenopodium quinoa Willd) Cultivars. Journal of Medicinal plants and By-Products. https://doi.org/https://doi.org/10.22034/jmpb.2024.366987.1758
- Vacher, J.-J. (1998). Responses of two main Andean crops, quinoa (Chenopodium quinoa Willd) and papa amarga (Solanum juzepczukii Buk.) to drought on the Bolivian Altiplano: Significance of local adaptation. Agriculture, ecosystems & environment, 68(1-2), 99-108. https://doi.org/https://doi.org/10.1016/S0167-8809(97)00140-0
- Akram, M. Z., Libutti, A., & Rivelli, A. R. (2023). Evaluation of vegetative development of quinoa under water stress by applying different organic amendments. Agronomy, 13(5), 1412. https://doi.org/https://doi.org/10.3390/agronomy13051412
- Fathi Gerdelidani, A., & Mirsyd Hosseini, H. (2014). Different aspects of the effects of biochar in improving soil quality. International Conference on Applied Research in Agriculture, Iran [In Persian]. https://civilica.com/doc/414849
- Lehmann, J., Gaunt, J., & Rondon, M. (2006). Bio-char sequestration in terrestrial ecosystems–a review. Mitigation and adaptation strategies for global change, 11(2), 403-427. https://doi.org/10.1007/s11027-005-9006-5
- Briggs, C. M., Breiner, J., & Graham, R. (2005). Contributions of Pinus Ponderosa charcoal to soil chemical and physical properties. The ASACSSA-SSSA International Annual Meetings. Salt Lake City, USA https://doi.org/10.1137/1.9780898717914.ch1,
- Gaskin, J. W., Speir, R. A., Harris, K., Das, K., Lee, R. D., Morris, L. A., & Fisher, D. S. (2010). Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agronomy Journal, 102(2), 623-633. https://doi.org/10.2134/agronj2009.0083
- Kammann, C. I., Linsel, S., Gößling, J. W., & Koyro, H.-W. (2011). Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil–plant relations. Plant and soil, 345(1), 195-210. https://doi.org/10.1007/s11104-011-0771-5
- Tourajzadeh, O., Piri, H., Naserin, A., & mahdi Cahri, M. (2024). Effect of nano biochar addition and deficit irrigation on growth, physiology and water productivity of quinoa plants under salinity conditions. Environmental and experimental botany, 217, 105564. https://doi.org/10.1016/j.envexpbot.2023.105564
- Abbas, G., Abrar, M. M., Naeem, M. A., Siddiqui, M. H., Ali, H. M., Li, Y., Ahmed, K., Sun, N., & Xu, M. (2022). Biochar increases salt tolerance and grain yield of quinoa on saline-sodic soil: multivariate comparison of physiological and oxidative stress attributes. Journal of soils and sediments, 22(5), 1446-1459. https://doi.org/10.1007/s11368-022-03159-2
- Derbali, I., Derbali, W., Gharred, J., Manaa, A., Slama, I., & Koyro, H.-W. (2023). Mitigating salinity stress in Quinoa (Chenopodium quinoa Willd.) With Biochar and Superabsorber Polymer amendments. Plants, 13(1), 92. https://doi.org/10.3390/plants13010092
- Yang, A., Akhtar, S. S., Li, L., Fu, Q., Li, Q., Naeem, M. A., He, X., Zhang, Z., & Jacobsen, S.-E. (2020). Biochar mitigates combined effects of drought and salinity stress in quinoa. Agronomy, 10(6), 912. https://doi.org/10.3390/agronomy10060912
- Turan, V. (2019). Confident performance of chitosan and pistachio shell biochar on reducing Ni bioavailability in soil and plant plus improved the soil enzymatic activities, antioxidant defense system and nutritional quality of lettuce. Ecotoxicology and environmental safety, 183, 109594. https://doi.org/10.1016/j.ecoenv.2019.109594
- Miri, F., Zamani, J., & Zarebanadkouki, M. (2021). The Effect of Different Levels of Pistachio Harvesting Wastes Biochar on Growth and Water Productivity of Maize (Zea mays L.). Iranian Journal of Soil and Water Research, 52(1), 227-236 [In Persian]. https://doi.org/10.22059/IJSWR.2020.312593.668779
- Arab Bafrani, Z., Ghanei-Bafghi, M.-J., & Shirmardi, M. (2020). Effect of wood residues of pistachio biochar on growth characteristics of Safflower. Journal of Soil Management and Sustainable Production, 10(3), 73-94. https://doi.org/10.22069/EJSMS.2021.17831.1937
- Sosa‐Zuniga, V., Brito, V., Fuentes, F., & Steinfort, U. (2017). Phenological growth stages of quinoa (Chenopodium quinoa) based on the BBCH scale. Annals of Applied Biology, 171(1), 117-124. https://doi.org/https://doi.org/10.1111/aab.12358
- Abbaspour, F., Asghari, H., Moghaddam, P. R., Abbasdokht, H., Shabahang, J., & Babaei, A. B. (2019). Effects of biochar on soil fertility and water use efficiency of black seed (Nigella sativa L.) under water stress conditions. Iranian Journal of Field and Crop Research, 17(1), 39-52 [In Persian]. https://doi.org/https://doi.org/10.22067/gsc.v17i1.63344
- Ghias, S., Shirmardi, M., Meftahizadeh, H., & Dehestani Ardakani, M. (2022). Effect of Biochar and Hydrogel on Morphophysiological and Biochemical Characteristics of Common Sage (Salvia officinalis L.) under Drought Stress. Plant Productions, 45(1), 67-80 [In Persian]. https://doi.org/https://doi.org/10.22055/ppd.2021.36030.1962
- Mir, E., Piri, H., & Naserin, A. (2021). Effects of different levels of wheat biochar and water stress on quantitative and qualitative characteristics of Carla (Bitter Melon) in potted conditions. Journal of Water Research in Agriculture, 35(2), 169-185 [In Persian]. https://doi.org/https://doi.org/10.22092/jwra.2021.352930.845
- Naeem, M. B., Jahan, S., Rashid, A., Shah, A. A., Raja, V., & El-Sheikh, M. A. (2024). Improving maize yield and drought tolerance in field conditions through activated biochar application. Scientific Reports, 14(1), 25000. https://doi.org/https://doi.org/10.1038/s41598-024-76082-w
- Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A. R., & Lehmann, J. (2012). Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils, 48(3), 271-284. https://doi.org/10.1007/s00374-011-0624-7
- Liu, W.-J., Jiang, H., & Yu, H.-Q. (2015). Development of biochar-based functional materials: toward a sustainable platform carbon material. Chemical reviews, 115(22), 12251-12285. https://doi.org/https://doi.org/10.1021/acs.chemrev.5b00195
- parsa, m., Kamaei, R., & yousefi, b. (2022). Effect of chemical and biological fertilizers on the physiological characteristics and activity of some antioxidant enzymes of peppermint (Mentha piperita) under drought stress conditions. Journal of Plant Research (Iranian Journal of Biology), 35(4), 657-673 [In Persian]. https://doi.org/https://dor.isc.ac/dor/20.1001.1.23832592.1401.35.4.12.2
- Comegna, A., Dragonetti, G., Kodesova, R., & Coppola, A. (2022). Impact of olive mill wastewater (OMW) on the soil hydraulic and solute transport properties. International Journal of Environmental Science and Technology, 19(8), 7079-7092. https://doi.org/https://doi.org/10.1007/s13762-021-03630-6
- Villoro, A., Latorre, B., Tormo, J., Jiménez, J. J., López, M. V., Nicolau, J. M., Vicente, J., Gracia, R., & Moret-Fernández, D. (2021). A TDR wireless device for volumetric water content sensing. Computers and electronics in agriculture, 181, 105939. https://doi.org/https://doi.org/10.1016/j.compag.2020.105939
- Comegna, A., Coppola, A., Dragonetti, G., & Sommella, A. (2016). Estimating nonaqueous-phase liquid content in variably saturated soils using time domain reflectometry. Vadose Zone Journal, 15(5), vzj2015. 2011.0145. https://doi.org/https://doi.org/10.2136/vzj2015.11.0145
- Comegna, A., Severino, G., & Coppola, A. (2022). A review of new TDR applications for measuring non-aqueous phase liquids (NAPLs) in soils. Environmental Advances, 9, 100296. https://doi.org/https://doi.org/10.1016/j.envadv.2022.100296
- Moret-Fernández, D., Lera, F., Latorre, B., Tormo, J., & Revilla, J. (2022). Testing of a commercial vector network analyzer as low-cost TDR device to measure soil moisture and electrical conductivity. Catena, 218, 106540. https://doi.org/https://doi.org/10.1016/j.catena.2022.106540
- Pérez, M., Mendez, D., Avellaneda, D., Fajardo, A., & Páez-Rueda, C. I. (2023). Time-domain transmission sensor system for on-site dielectric permittivity measurements in soil: A compact, low-cost and stand-alone solution. HardwareX, 13, e00398. https://doi.org/https://doi.org/10.1016/j.ohx.2023.e00398
- Seibel, W. (1989). Approved Methods. American Association of Cereal Chemists, St. Paul, MN, USA. Methods. https://doi.org/https://doi.org/10.1002/star.19890411114
- AOAC. (1995). Official Association of Official Analytical Chemists, St. Paul, MN, USA. Methods. (16th ed., Vol. 1). AOAC International.
- Haider, I., Raza, M. A. S., Iqbal, R., Aslam, M. U., Habib-ur-Rahman, M., Raja, S., Khan, M. T., Aslam, M. M., Waqas, M., & Ahmad, S. (2020). Potential effects of biochar application on mitigating the drought stress implications on wheat (Triticum aestivum L.) under various growth stages. Journal of Saudi Chemical Society, 24(12), 974-981. https://doi.org/10.1016/j.jscs.2020.10.005
- Rivelli, A. R., Akram, M. Z., & Libutti, A. (2023). Woody Biochar Rate and Water Shortage Impact on Early Growth Stages of Chenopodium quinoa Willd. Agronomy, 14(1), 53. https://doi.org/10.3390/agronomy14010053
- Al-Naggar, A., Abd El-Salam, R., Badran, A., & El-Moghazi, M. (2017). Genotype and drought effects on morphological, physiological and yield traits of quinoa (Chenopodium quinoa Willd.). Asian J. Adv. Agric. Res, 3(1), 1-15. https://doi.org/10.9734/AJAAR/2017/36655
- Hirich, A., Choukr-Allah, R., & Jacobsen, S.-E. (2014). The combined effect of deficit irrigation by treated wastewater and organic amendment on quinoa (Chenopodium quinoa Willd.) productivity. Desalination and Water Treatment, 52(10-12), 2208-2213. https://doi.org/10.1080/19443994.2013.777944
- Sun, Y., Liu, F., Bendevis, M., Shabala, S., & Jacobsen, S. E. (2014). Sensitivity of two quinoa (ChenopodiumquinoaWilld.) varieties to progressive drought stress. Journal of Agronomy and Crop Science, 200(1), 12-23. https://doi.org/10.1111/jac.12042
- Yang, A., Akhtar, S., Amjad, M., Iqbal, S., & Jacobsen, S. E. (2016). Growth and physiological responses of quinoa to drought and temperature stress. Journal of Agronomy and Crop Science, 202(6), 445-453. https://doi.org/10.1111/jac.12167
- Naderi, M., Noormohammadi, G., Majidi, I., Darvish, F., Shirani Rad, A. H., & Madani, H. (2005). Evaluation of summer safflower response to different intensities of drought stress in Isfahan region. IRANIAN JOURNAL OF CROP SCIENCES, 7(3), 212-225 [In Persian]. https://doi.org/https://dor.isc.ac/dor/20.1001.1.15625540.1384.7.3.3.9
- Akram, M. Z., Libutti, A., & Rivelli, A. R. (2024). Drought stress in quinoa: Effects, responsive mechanisms, and management through biochar amended soil: A review. Agriculture, 14(8), 1418. https://doi.org/https://doi.org/10.3390/agriculture14081418
- Dong, D., Feng, Q., Mcgrouther, K., Yang, M., Wang, H., & Wu, W. (2015). Effects of biochar amendment on rice growth and nitrogen retention in a waterlogged paddy field. Journal of soils and sediments, 15, 153-162. https://doi.org/https://doi.org/10.1007/s11368-014-0984-3
- Zhang, W., Niu, W., & Luo, H. (2024). Effect of Biochar Amendment on the Growth and Photosynthetic Traits of Plants Under Drought Stress: A Meta-Analysis. Agronomy, 14(12), 2952. https://doi.org/https://doi.org/10.3390/agronomy14122952
- Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'Neill, B., Skjemstad, J. O., Thies, J., Luizão, F. J., & Petersen, J. (2006). Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70(5), 1719-1730. https://doi.org/https://doi.org/10.2136/sssaj2005.0383
- Steiner, C., Teixeira, W. G., Lehmann, J., Nehls, T., de Macêdo, J. L. V., Blum, W. E., & Zech, W. (2007). Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and soil, 291, 275-290. https://doi.org/10.1007/s11104-007-9193-9
- Sanchez, H. B., Lemeur, R., Damme, P. V., & Jacobsen, S.-E. (2003). Ecophysiological analysis of drought and salinity stress of quinoa (Chenopodium quinoa Willd.). Food Reviews International, 19(1-2), 111-119. https://doi.org/10.1081/FRI-120018874
- Akram, M. Z., Rivelli, A. R., Libutti, A., Liu, F., & Andreasen, C. (2024). Mitigation of drought stress for Quinoa (Chenopodium quinoa Willd.) varieties using woodchip biochar-amended soil. Plants, 13(16), 2279. https://doi.org/https://doi.org/10.3390/plants13162279
- Mbave, Z. A. (2013). Water stress effects on growth, yield and quality of wheat (Triticum aestivum L.) [Ph.D. Theses, University of Pretoria].
- Sarvestani, Z. T., Pirdashti, H., Sanavy, S., & Balouchi, H. (2008). Study of water stress effects in different growth stages on yield and yield components of different rice (Oryza sativa L.) cultivars. Pakistan journal of biological sciences: PJBS, 11(10), 1303-1309. https://doi.org/10.3923/pjbs.2008.1303.1309
- Clarke, J. M., Townley‐Smith, F., McCaig, T. N., & Green, D. G. (1984). Growth Analysis of Spring Wheat Cultivars of Varying Drought Resistance. Crop Science, 24(3), 537-541. https://doi.org/10.2135/cropsci1984.0011183X002400030026x
- Gebremedhin, G., Bereket, H., Daniel, B., & Tesfaye, B. (2015). Effect of biochar on yield and yield components of wheat and post-harvest soil properties in Tigray, Ethiopia. J Fertil Pestic, 6(158), 2. https://doi.org/10.4172/2471-2728.1000158
- Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., & Joseph, S. (2008). Agronomic values of greenwaste biochar as a soil amendment. Soil Research, 45(8), 629-634. https://doi.org/10.1071/SR07109
- Akhtar, S. S., Andersen, M. N., & Liu, F. (2015). Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agricultural Water Management, 158, 61-68. https://doi.org/10.1016/j.agwat.2015.04.010
- Daraei, E., Bayat, H., & Gregory, A. S. (2024). Impact of natural biochar on soil water retention capacity and quinoa plant growth in different soil textures. Soil and Tillage Research, 244, 106281. https://doi.org/https://doi.org/10.1016/j.still.2024.106281
- Aslam, M. U., Raza, M. A. S., Saleem, M. F., Waqas, M., Iqbal, R., Ahmad, S., & Haider, I. (2020). Improving strategic growth stage-based drought tolerance in quinoa by rhizobacterial inoculation. Communications in Soil Science and Plant Analysis, 51(7), 853-868. https://doi.org/10.1080/00103624.2020.1744634
- Rabbani, J., & Emam, Y. (2011). Yield Response of Maize Hybrids to Drought Stress at Different Growth Stages. Journal of Crop production and processing, 1(2), 65-78 [In Persian]. https://doi.org/http://dorl.net/dor/20.1001.1.22518517.1390.1.2.5.0
- Saint Pierre, C., Peterson, C. J., Ross, A. S., Ohm, J. B., Verhoeven, M. C., Larson, M., & Hoefer, B. (2008). White wheat grain quality changes with genotype, nitrogen fertilization, and water stress. Agronomy Journal, 100(2), 414-420. https://doi.org/https://doi.org/10.2134/agronj2007.0166
- Ghobadi, M., Bakhshandeh, M., Fathi, G., Gharineh, M., Alami-Said, K., Naderi, A., & Ghobadi, M. (2006). Short and long periods of water stress during different growth stages of canola (Brassica napus L.): effect on yield, yield components, seed oil and protein contents. Journal of Agronomy, 5(2), 336-341. https://doi.org/10.3923/ja.2006.336.341
- Ramzani, P. M. A., Shan, L., Anjum, S., Ronggui, H., Iqbal, M., Virk, Z. A., & Kausar, S. (2017). Improved quinoa growth, physiological response, and seed nutritional quality in three soils having different stresses by the application of acidified biochar and compost. Plant Physiology and Biochemistry, 116, 127-138. https://doi.org/10.1016/j.plaphy.2017.05.003
- Yadav, G. S., Shivay, Y., Kumar, D., & Babu, S. (2013). Enhancing iron density and uptake in grain and straw of aerobic rice through mulching and rhizo-foliar fertilization of iron. Afr. J. Agric. Res, 8, 5447-5454. https://doi.org/10.5897/AJAR20xx.xxx
- Mannan, M., Mia, S., Halder, E., & Dijkstra, F. A. (2021). Biochar application rate does not improve plant water availability in soybean under drought stress. Agricultural Water Management, 253, 106940. https://doi.org/https://doi.org/10.1016/j.agwat.2021.106940
- Wu, Y., Wang, X., Zhang, L., Zheng, Y., Liu, X., & Zhang, Y. (2023). The critical role of biochar to mitigate the adverse impacts of drought and salinity stress in plants. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1163451
- Hatzig, S. V., Nuppenau, J.-N., Snowdon, R. J., & Schießl, S. V. (2018). Drought stress has transgenerational effects on seeds and seedlings in winter oilseed rape (Brassica napus L.). BMC plant biology, 18, 1-13. https://doi.org/10.1186/s12870-018-1531-y
- Aslam, M., Nelson, M., Kailis, S., Bayliss, K., Speijers, J., & Cowling, W. (2009). Canola oil increases in polyunsaturated fatty acids and decreases in oleic acid in drought‐stressed Mediterranean‐type environments. Plant Breeding, 128(4), 348-355. https://doi.org/10.1111/j.1439-0523.2008.01577.x
- Alsamadany, H., Alharby, H. F., Al-Zahrani, H. S., Alzahrani, Y. M., Almaghamsi, A. A., Abbas, G., & Farooq, M. A. (2022). Silicon-nanoparticles doped biochar is more effective than biochar for mitigation of arsenic and salinity stress in Quinoa: Insight to human health risk assessment. Frontiers in Plant Science, 13, 989504. https://doi.org/https://doi.org/10.3389/fpls.2022.989504
- Khan, S., Irshad, S., Mehmood, K., Hasnain, Z., Nawaz, M., Rais, A., Gul, S., Wahid, M. A., Hashem, A., & Abd_Allah, E. F. (2024). Biochar production and characteristics, its impacts on soil health, crop production, and yield enhancement: A review. Plants, 13(2), 166. https://doi.org/https://doi.org/10.3390/plants13020166
- Ghazouani, H., Ibrahimi, K., Amami, R., Helaoui, S., Boughattas, I., Kanzari, S., Milham, P., Ansar, S., & Sher, F. (2023). Integrative effect of activated biochar to reduce water stress impact and enhance antioxidant capacity in crops. Science of the Total Environment, 905, 166950. https://doi.org/10.1016/j.scitotenv.2023.166950
|