
تعداد نشریات | 13 |
تعداد شمارهها | 641 |
تعداد مقالات | 6,678 |
تعداد مشاهده مقاله | 9,127,808 |
تعداد دریافت فایل اصل مقاله | 8,583,030 |
تأثیر بستر کشت و ورمیواش بر ریشهزایی قلمه زیتون و رشد آن | ||
مجله مدیریت خاک و تولید پایدار | ||
دوره 15، شماره 1، فروردین 1404، صفحه 145-165 اصل مقاله (1.48 M) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/ejsms.2025.22510.2156 | ||
نویسندگان | ||
سیده زهرا موسوی1؛ رضا ابراهیمی* 2؛ اکبر فرقانی3؛ عبدالله حاتم زاده4 | ||
1دانشجوی کارشناسیارشد علوم خاک، دانشگاه گیلان، رشت، ایران. | ||
2استادیار، گروه علوم خاک، دانشگاه گیلان، رشت، ایران | ||
3دانشیار، گروه علوم خاک، دانشگاه گیلان، رشت، ایران. | ||
4استاد، گروه علوم باغبانی، دانشگاه گیلان، رشت، ایران | ||
چکیده | ||
سابقه و هدف: سطح زیر کشت زیتون در کشورمان حدود 60000 هکتار گزارش شده است. یکی از مشکلات اصلی تکثیر زیتون با قلمه، سخت ریشهزا بودن قلمه آن است. نوع بسترکشت، دما، عمق، رطوبت و زهکشی بستر کشت، زمان قلمهگیری، کیفیت قلمه، تیمار قلمهها پیش یا پس از قلمهگیری با تنظیمکنندهها و غلظت بهینه این مواد از مهمترین عاملهایی هستند که برای افزایش ریشهزایی قلمه ها مورد توجه محققین و تولیدکنندگان نهال از قلمه است. با توجه به ارزش اقتصادی تولید نهال زیتون از قلمه، شناسایی بسترهای کشت قابل دسترس و روشهای بهبود درصد ریشهزایی قلمه ها در این نوع بسترها، ارزش و اهمیت اقتصادی دارد. بهدلیل درصد ریشهزایی پایین و سرعت کم فرایند ریشهزایی قلمههای زیتون، معمولا از هورمونهای ریشهزا برای تکثیر این محصول استفاده میشود. این تحقیق با هدف بررسی اثر کود مایع ارگانیک (ورمیواش) بر ریشهزائی قلمههای زیتون در پنج نوع بستر کشت انجام شد. مواد و روشها: تاثیر بستر کشت و عوامل محرک ریشهزایی بر درصد ریشهزایی و رشد قلمههای رقم زرد زیتون به صورت آزمایش فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار در شرایط گلخانهای انجام شد. فاکتورها شامل بستر کشت ( ماسه رودخانهای، پرلیت، سولوپیت، ماسه رودخانهای + پرلیت، ماسه رودخانهای + سولوپیت) و محرک ریشهزایی (آب چاه بعنوان شاهد، ورمیواش و هورمون ایندول بوتیریک اسید ) بود. بعد از آماده شدن بسترهای کشت، یک سوم قلمهها قبل از غرس با هورمون ریشه زایی تیمار و در دوره ریشه زایی و رشد، با آب چاه، و مابقی قلمهها بعد از غرس در بسترها، یا با آب چاه و یا با ورمیواش رقیق شده، در مواقع نیاز آبیاری شدند. یافتهها: نتایج نشان داد بیشترین درصد ریشهزائی و بیشترین رشد قلمههای ریشهدار شده در بسترهای کشت تلفیقی (ماسه + پرلیت و ماسه + سولوپیت) در مقایسه با بسترهای کشت ساده (ماسه، پرلیت و سولوپیت) بهدست آمد. کمترین درصد ریشهزائی و رشد قلمهها در ماسه بود. بیشترین مقدار نیتروژن، فسفر و پتاسیم در برگ قلمههای ریشهدار شده در بسترهای کشت تلفیقی بدست آمد. علاوه بر این، در اغلب موارد درصد ریشهزایی، رشد ریشه در قلمههای ریشهدار شده و همچنین مقدار عناصر غذایی در برگ قلمهها در بسترهای تیمار شده با ورمیواش و هورمون رشد، تفاوت معنی دار نداشت. نتیجهگیری: استفاده از بسترهای کشت تلفیقی شامل: ماسه + پرلیت و ماسه + سولوپیت در مقایسه با بسترهای ساده شامل ماسه، پرلیت و سولوپیت برای ریشهزایی قلمههای رقم زرد زیتون با استفاده از ورمیواش تولیدی شرکت فناور کود طبیعت، بجای هورمون IBA وارداتی، قابل توصیه است. | ||
کلیدواژهها | ||
"بستر کشت "؛ "سولوپیت"؛ "ماسه"؛ محرک ریشهزا" | ||
مراجع | ||
1.Ahmadi, K., Abadzadeh, H. R., Hatami, F., Hoseynpour, R., & Abdshah, H. (2021). Agricultural statistics of 2020, horticultural products. Information and Communication Technology Center of the Ministry of Agricultural Jihad. 163 p, Report [In Persian]
2.Hartmann, H. T., Kester, D. E., Davies, J. F. T., & Geneve, R. L. (2002). Plant Propagation: Principles and Practices (7th ed.). Pearson Education, Inc. (Prentice- Hall), Upper Saddle River, New Jersey. pp. 880. doi: 10.4236/as.2023.141211.
3.Azaru, M., Ebrahimi Gaskarei, R., & Shabanpour, M. (2024). Evaluation of peat produced from rice husk. Journal of Ornamental Plants, 9(1), 83-98 [In Persian]
4.Akazawa, S. I., Badamkhatan, T., Omiya, K., Shimizu, Y., Hasegawa, N., Sakai, K., Kamimura, K., Takeuchi, A., & Murakami, Y. (2023). Growth-promoting effect of vermiwash on house tomato plants. Sustainability, 15, 10327. doi.org/10.3390/su151310327.
5.Nath, G., & Singh, K. (2016). Vermiwash: Liquid biofertilizer. Research Journal of Science and Technology, 8(1), 21-30. doi:10.5958/2349-2988.2016.00003.6.
6.Verma, S., Babu, A., Patel, A., Singh, S. K., Pradhan, S. S., Verma, S. K., Singh, J. P., & Singh, R. K. (2018). Significance of vermiwash on crop production: A review. Journal of Pharmacognosy and Phytochemistry, 7(2), 297-301. doi.org/ 10.22271/chemi.2020.v8.i5u.10517.
7.Jones, J. (2001). Laboratory guide for conducting soil tests and plant analysis. CRC Press, Boca Raton, USA. pp. 384. doi.org/10.1201/9781420025293.
8.Hartmann, H. T., Kester, D. E., Davies, F. T., & Geneve, R. L. (2011). Plant Propagation: Principles and Practices (8th ed.) Report. Prentice-Hall, Englewood Cliffs, New Jersey, USA. 928 p.
9.Aghdaei, M., Nemati, S. H., Samiei, L., & Sharifi, A. (2019). Effect of rooting medium, cutting types and auxin on rooting of pepino (Solanum muricatum Aiton) cutting. Applied Ecology and Environmental Research, 17(5), 10357-10369. doi.org/ 10. 15666/aeer/1705_1035710369. [In Persian]
10.Bhavya, K., Sumalatha, N., Archana, T., & Vijaya Lakshmi, K. (2021). A review on vermiwash: A plant growth booster and a disease suppressor. The Pharma Innovation Journal, 10(11), 2959-2962. doi.org/10.3329/bjnag.v38i1.76560.
11.Weijers, D., Ljung, K., Estelle, M., & Leyser, O. (2022). Auxin Signaling: From Synthesis to Systems Biology (2nd ed.). Cold Spring Harbor Laboratory Press. Report, 468 p. 12.Fattorini, L., Veloccia, A., Della Rovere, F., D’Angeli, S., Falasca, G., & Altamura, M. M. (2017). Indole-3-butyric acid promotes adventitious rooting in Arabidopsis thaliana thin cell layers by conversion into indole-3-acetic acid and stimulation of anthranilate synthase activity. BMC Plant Biology, 17, 121. doi:10.1186/s12870-017-1071-x.
13.Lowe, G. E., Shepherd, M., Rose, T. J., & Raymond, C. (2022). Effect of stock plant growing medium and density upon a cutting propagation system for tea tree, Melaleuca alternifolia. Plants, 11(18), 2421. doi.org/10.3390/plants 11182421.
14.Awadhpersad, V. R., Ori, L., & Adil Ansari, A. (2021). Production and effect of vermiwash and vermicompost on plant growth parameters of tomato (Lycopersicon esculentum Mill.) in Suriname. International Journal of Recycling Organic Waste in Agriculture, 10(4), 397-413. doi.org/10.30486/ ijrowa.2021.1911898.1148.
15.Fahad, S., Sonmez, O., Saud, S., Wang, D., Wu, C., Adnan, M., & Turan, V. (2021). Plant Growth Regulators for Climate-Smart Agriculture. CRC Press. 224 p. doi.org/10.1201/9781003109013.
16.Salighehdar, F., Safari, A. R., Molaahmad Nalousi, A., & Avestan, S. (2016). The effect of different ratios of peat and perlite on quantitative and qualitative characteristics of Aloe vera grown in hydroponic system. Journal of Soil and Plant Interactions, 7, 113-124. doi:20.1001.1.20089082.1395.7.2.10.8. [In Persian]
17.Udhaya Nandhini, D., & Venmathi, T. (2017). Vermiwash: A potential plant growth promoter. Agric international, 4, 27-30. doi:10.5958/2454-8634.2017. 00006.7. 18.Justamante, M. S., Mhimdi, M., Albacete, A., Moreno, M. Á., Mataix, I., & Manuel, J. (2021). Effects of auxin (indole-3-butyric acid) on adventitious root formation in peach-based Prunus rootstocks. Plants, 11(7), 913. doi.org/10.3390/plants11070913. 19.Becagli, M., Arduini, I., & Cardelli, R. (2022). Using biochar and vermiwash to improve biological activities of soil. Agriculture, 12(2), 178. doi.org/10. 3390/agriculture12020178.
20.Deepthi, M. P., Nivethitha, S., Saminathan, K., Narendhirakannan, R. T., Karmegam, N., & Kathireswari, P. (2021). Effect of vermiwash prepared from livestock biowaste as vermiponics medium on the growth and biochemical indices of Amaranthus viridis L. Environmental Technology & Innovation, 21, 101300. doi:10.1016/j.eti.2020. 101300. 21.Johnson, E., Preece, J., Aradhya, M., & Gradziel, T. (2020). Rooting response of Prunus wild relative semi-hardwood cuttings to indole-3-butyric acid potassium salt (KIBA). Scientia Horticulturae, 263, 109-144. doi:10.1016/j.scienta. 2019.109144.
22.Kapczyńska, A., Kowalska, I., Prokopiuk, B., & Pawłowska, B. (2020). Rooting media and biostimulator goteo treatment effect on adventitious root formation of Pennisetum ‘Vertigo’ cuttings and the quality of the final product. Agriculture, 10(11), 570. doi.org/10.3390/agriculture10110570.
23.Chandukishore, T., Samskrathi, D., Srujana, T., Rangaswamy, B., & Prabhu, A. A. (2023). Influence of plant extract-based vermiwash on plant growth parameters and biocontrol of thrips (Scirtothrips dorsalis) in Capsicum annum. Journal of Natural Pesticide Research, 5, 100042. https://doi.org/ 10.1016/j.napere.2023.100042.
24.Woodward, A. W., & Bartel, B. (2005). Auxin: Regulation, action, and interaction. Annals of Botany, 95, 707-735. doi: 10.1093/aob/mci083. 25.Kaur, P., Bhardwaj, M., & Babbar, I. (2015). Effect of vermicompost and vermiwash on growth and yield of chili (Capsicum annuum). International Journal of Current Microbiology and Applied Sciences, 4(12), 872-876. doi:10.20546/ijcmas.2015.412.099.
26.Phong, D. T., Hanh, T. T. H., & Lam, T. T. (2021). Effect of biofertilizers and vermiwash on growth and yield of sweet potato (Ipomoea batatas). European Journal of Science and Technology, 27, 319-325. doi.org/10.31558/2410-7404.2021.27.4.
27.Zhang, H., Jiang, S., Zhai, J., & Liu, Y. (2019). The effects of biochar and vermiwash on the growth of Lactuca sativa and soil health. Applied Soil Ecology, 143, 172-179. doi.org/10. 1016/j.apsoil.2019.05.022.
28.Nascimento, R. M. R., Soares, L. R. R., & Guimarães, C. A. (2021). The use of vermicompost and vermiwash as fertilizers for the production of Brassica oleracea seedlings. Horticultura Brasileira, 39(3), 251-258. doi.org/10.1590/s0102-053620210301.
29.Hossain, M. I., Moniruzzaman, M., Hossain, M. S., & Rahman, M. M. (2020). Effects of different levels of vermicompost and vermiwash on the growth and yield of cucumber (Cucumis sativus L.). International Journal of Recycling Organic Waste in Agriculture, 9(1), 83-93. doi.org/10.1007/s40093-020-00306-y. | ||
آمار تعداد مشاهده مقاله: 61 تعداد دریافت فایل اصل مقاله: 70 |