- Chimitdorzhieva,D. (2023). Paths of Carbon Sequestration in Land Use (Literature Review). Contemporary Problems of Ecology, 16, 274-284. doi: https://doi.org/10.1134/S1995425523030034
- Bodo, T., Gimah, B. G., & Seomoni, K. J. (2021). Deforestation and habitat loss: Human causes, consequences and possible solutions. Journal of Geographical Research, 4(2), 22-30. doi: https://doi.org/10.30564/jgr.v4i2.3059
- Kebebew, S., Bedadi, B., Erkossa, T., Yimer, F., & Wogi, L. (2022). Effect of different land-use types on soil properties in Cheha District, South-Central Ethiopia. Sustainability, 14(3), 1323. doi: https://doi.org/10.3390/su14031323
- Huang, W., Zong, M., Fan, Z., Feng, Y., Li, S., Duan, C., & Li, H. (2021). Determining the impacts of deforestation and corn cultivation on soil quality in tropical acidic red soils using a soil quality index. Ecological Indicators, 125, doi: https://doi.org/10.1016/j.ecolind.2021.107580
- Ayoubi, S., Sadeghi, N., Abbaszadeh Afshar, F., Abdi, M. R., Zeraatpisheh, M., & Rodrigo-Comino, J. (2021). Impacts of oak deforestation and rainfed cultivation on soil redistribution processes across hillslopes using 137Cs techniques. Forest Ecosystems, 8(1), 1-14. doi: https://doi.org/10.1186/s40663-021-00311-1
- Davari, M., Gholami, L., Nabiollahi, K., Homaee, M., & Jafari, H. J. (2020). Deforestation and cultivation of sparse forest impacts on soil quality (case study: West Iran, Baneh). Soil and Tillage Research, 198, doi: https://doi.org/10.1016/j.still.2019.104504
- Pendall, E., Hewitt, A., Boer, M.M., Carrillo, Y., Glenn, N.F., Griebel, A., Middleton, J.H., Mumford, P.J., Ridgeway, P., Rymer, P.D., & Steenbeeke, G. (2022). Remarkable Resilience of Forest Structure and Biodiversity Following Fire in the Peri-Urban Bushland of Sydney, Australia. Climate, 10(6), 86. doi: https://doi.org/10.3390/cli10060086
- Tian, J., He, N., Kong, W., Deng, Y., Feng, K., Green, S. M., ... & Yu, G. (2018). Deforestation decreases spatial turnover and alters the network interactions in soil bacterial communities. Soil Biology and Biochemistry, 123, 80-86. doi: https://doi.org/10.1016/j.soilbio.2018.05.007
- Wang, L., Hamel, C., Lu, P., Wang, J., Sun, D., Wang, Y., Lee, S. J., & Gan, G. Y. (2023). Using enzyme activities as an indicator of soil fertility in grassland - an academic dilemma. Frontiers in plant science, 14, doi: https://doi.org/10.3389/fpls.2023.1175946
- Hassan, F.O., Abdel-Salam, A.A., Rashed, H.S., & Shalaby, A. (2022). Soil quality assessment of El-Fayoum depression, Egypt, using remote sensing and GIS. Annals of Agricultural Science, Moshtohor, 60(1), 249-258. doi: https://doi.org/10.21608/assjm.2022.227891
- Kooch, Y., & Noghre, N. (2020). Nutrient cycling and soil-related processes under different land covers of semi-arid rangeland ecosystems in northern Iran. Catena, 193, 104621. doi: https://doi.org/10.1016/j.catena.2020.104621
- Nilsson, M.-C., Wardle, D. A., & Dahlberg, A. (1999). Effects of plant litter species composition and diversity on the boreal forest plant-soil system. Oikos, 16–26. https://doi.org/10.2307/3546566
- Bremner, J. M. & Mulvaney, C. S. (1982). Nitrogen-total. In ‘Methods of Soil Analyses. Part 2: Chemical and Microbiological Properties. American Society of Agronomy, Madison, 595-624.
- Tavakoli, M., Kooch, Y., & Akbarinia, M. (2018a). Frequency and diversity of worms in topsoil of degraded and reclaimed forest habitats of the Caspian region. Iranian Journal of Forest, 10(3), 293-306. [In Persian]. https://www.ijf-isaforestry.ir/article_79991.html
- Zancan, S., Trevisan, R. & Paoletti, M. G. (2006). Soil algae composition under different agro-ecosystems in North-Eastern Italy. Agric Ecosystem Environment, 112(1), 1–12. https://doi.org/10.1016/j.agee.2005.06.018
- Blake, G. R. & Hartge, K. H. (1986). Particle density. In: Klute, A. (Ed.), Methods of soil analysis. Part 1. Physical and mineralogical methods, 2nd ed. SSSA Book Ser. 5. ASA and SSSA, Madison, WI, 377–382.
- Pires, L. F., Brinatti, A. M., Saab, S. C., & Cássaro, F. A. M. (2014). Porosity distribution by computed tomography and its importance to characterize soil clod samples. Applied Radiation and Isotopes, 92, 37–45. https://doi.org/10.1016/j.apradiso.2014.06.010
- Kemper, W. D., & Rosenau, R. C. (1986). Aggregate stability and size distribution. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 5, 425–442. https://doi.org/10.2136/sssabookser5.1.2ed.c17
- Six, J., Callewaert, P., Lenders, S., De Gryze, S., Morris, S.J., Gregorich, E.G., Paul, E.A. & Paustian, K. (2002). Measuring and understanding carbon storage in afforested soils by physical fractionation. Soil Science Society of America Journal, 66(6), 1981-1987. https://doi.org/10.2136/sssaj2002.1981
- Allisson, L. (1965). Organic carbon. Methods of soil analysis, chemical and microbiological properties. Madison: American Society of Agronomy, 1367-1378. https://doi.org/10.2134/agronmonogr9.2.c39
- Wang, W. J., & Dalal, R. C. (2006). Carbon inventory for a cereal cropping system under contrasting tillage, nitrogen fertilisation and stubble management practices. Soil and Tillage Research, 91(1-2), 68-74. https://doi.org/10.1016/j.still.2005.11.005
- Chapman, H. D., & Pratt, P. F. (1962). Methods of analysis for soils, plants and waters. Soil Science, 93(1), 68.
- Bower, C. A., Reitemeier, R. F. & Fireman, M. (1952). Exchangeable cation analysis of saline and alkali soils. Soil Science, 73, 251-261.
- Nelson, D. W. a, & Sommers, L. (1983). Total carbon, organic carbon, and organic matter. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9, 539–579. https://doi.org/10.2134/agronmonogr9.2.2ed.c29
- Elliott, E. T., & Cambardella, C. A. (1991). Physical separation of soil organic matter. Agriculture, Ecosystems & Environment, 34(1-4), 407-419. https://doi.org/10.1016/0167-8809(91)90124-G
- Page, A. L., Miller, R. H., & Jeeney, D. R. (1750). Methods of soil analysis, Part 1. Physical properties. American Society of Agronomy Publication, Madison. 770p.
- Jones, D. L., & Willett, V. B. (2006). Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biology and Biochemistry, 38(5), 991–999. https://doi.org/10.1016/j.soilbio.2005.08.012
- Blair, S. N., Kohl, H. W., 3rd, Barlow, C. E., Paffenbarger, R. S., Jr, Gibbons, L. W., & Macera, C. A. (1995). Changes in physical fitness and all-cause mortality. A prospective study of healthy and unhealthy men. JAMA, 273(14), 1093–1098. https://doi:10.1001/jama.1995.03520380029031
- Neatrour, M. A., Jones, R. H., & Golladay, S. W. (2005). Correlations between soil nutrient availability and fine-root biomass at two spatial scales in forested wetlands with contrasting hydrological regimes. Canadian Journal of Forest Research, 35(12), 2934–2941. https://doi.org/10.1139/x05-217
- Alef, K., & Nannipieri, P. (1995). Methods in applied soil microbiology and biochemistry (Issue 631.46 M592ma). Academic Press. https://www.cabidigitallibrary.org/doi/full/10.5555/19951908199
- Bayranvand, M., Kooch, Y. & Rey, A. (2017). Earthworm population and microbial activity temporal dynamics in a Caspian Hyrcanian mixed forest. European Journal of Forest Research, 136(3), 447-456. https://doi.org/10.1007/s10342-017-1044-5
- Kooch, Y., B. Samadzadeh and S. M. Hosseini. (2017). The effects of broad-leaved tree species on litter quality and soil properties in a plain forest stand. Catena, 150(3), 223-229. https://doi.org/10.1016/j.catena.2016.11.023
- Neher, D., Wu, J., Barbercheck, M. & Anas, O. (2005). Ecosystem type affects interpretation of soil nematode community measures. Applied Soil Ecology, 30(1), 47-64. https://doi.org/10.1016/j.apsoil.2005.01.002
- Adl, M. S., Acosta-Mercado, D., Anderson, R. T., & Lynn, H. D. (2007). Protozoa, supplementary material. Soil sampling and methods of analysis, 2(1), 455-470.
- Wollum, A. G. (1982). Cultural methods for soil microorganisms. Methods of soil analysis: part 2 chemical and microbiological properties, 9, 781-802. https://doi.org/10.2134/agronmonogr9.2.2ed.c37
- Anderson, T.H. & Domsch, K.H. (1990). Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biology and Biochemistry, 22(2), 251-255. https://doi.org/10.1016/0038-0717(90)90094-G
- Brookes, P. C., Landman, A., Pruden, G., & Jenkinson, D. S. (1985). Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17(6), 837–842. https://doi.org/10.1016/0038-0717(85)90144-0
- Robertson, G. P., Coleman, D. C., Sollins, P., & Bledsoe, C. S. (1999). Standard soil methods for long-term ecological research (Vol. 2). Oxford University Press on Demand. 480p.
- Singh, J.S., Singh, D.P. & Kashyap, A.K. (2009). A comparative account of the microbial biomass-N and N-mineralization of soils under natural forest, grassland and crop field from dry tropical region, India. Plant Soil Environment, 55(6), 223-230. doi: 10.17221/1021-PSE
- Wang, Q., Xiao, F., He, T., & Wang, S. (2010). Responses of labile soil organic carbon and enzyme activity in mineral soils to forest conversion in the subtropics. Annals of Forest Science, 70, 579–587. https://doi.org/10.1007/s13595-013-0294-8
- López‐Vicente, M., Calvo-Seas, E., Álvarez, S., & Cerdà, A. (2020). Effectiveness of Cover Crops to Reduce Loss of Soil Organic Matter in a Rainfed Vineyard. Land, 9, doi: https://doi.org/10.3390/land9070230
- Chandra, L. R., Gupta, S., Pande, V., & Singh, N. (2016). Impact of forest vegetation on soil characteristics: a correlation between soil biological and physico-chemical properties. 3 Biotech, 6, 1-12. doi: https://doi.org/10.1007/s13205-016-0510-y
- Pérez‐Corona, M.E., Hernández, M.C.P. & de Castro, F.B. (2006). Decomposition of alder, ash, and poplar litter in a Mediterranean riverine area. Communications in Soil Science and Plant Analysis, 37(7-8), 1111-1125. doi: https://doi.org/10.1080/00103620600588496
- Liu, X., Tang, X., Lie, Z., He, X., Zhou, G., Yan, J., ... & Liu, J. (2022). Tree species richness as an important biotic factor regulates the soil phosphorus density in China's mature natural forests. Science of the Total Environment, 845, doi: https://doi.org/10.1016/j.scitotenv.2022.157277
- Asmare, T. K., Abayneh, B., Yigzaw, M., & Birhan, T. A. (2023). The effect of land use type on selected soil physicochemical properties in Shihatig watershed, Dabat district, Northwest Ethiopia. Heliyon, 9(5), e16038. DOI: https://doi.org/10.1016/j.heliyon.2023.e16038
- Devi, S.S., Devi, L.S., & Yadava, P.S. (2007). Floristic diversity assessment and vegetation analysis of tropical semievergreen forest of Manipur, north east India. https://api.semanticscholar.org/CorpusID:30392294
- Braos, L. B., Carlos, R. S., Bettiol, A. C. T., Bergamasco, M. A. M., Terçariol, M. C., Ferreira, M. E., & da Cruz, M. C. P. (2023). Soil Carbon and Nitrogen Forms and Their Relationship with Nitrogen Availability Affected by Cover Crop Species and Nitrogen Fertilizer Doses. Nitrogen, 4(1), 85-101. doi: https://doi.org/10.3390/nitrogen4010007
- Tolessa, T., & Senbeta, F. (2018). The extent of soil organic carbon and total nitrogen in forest fragments of the central highlands of Ethiopia. Journal of Ecology and Environment, 42, 1-11. doi: https://doi.org/10.1186/s41610-018-0081-4
- Kooch, Y. (2012). Soil variability related to pit and mound, canopy cover and individual trees in a Hyrcanian Oriental Beech stand. Ph.D. Thesis, Tarbiat Modares University, 203p. doi: https:// 1007/s10342-013-0766-2
- Adugna, A., & Abegaz, A. (2016). Effects of land use changes on the dynamics of selected soil properties in northeast Wellega, Ethiopia. Soil, 2(1), 63-70. doi: http://dx.doi.org/10.5194/soild-2-1075-2015
- Swanson, M. E., Studevant, N. M., Campbell, J. L., & Donato, D. C. (2014). Biological associates of early-seral pre-forest in the Pacific Northwest. Forest Ecology and Management, 324, 160-171. doi: https://doi.org/10.1016/j.foreco.2014.03.046
- Kooch, Y. (2012). Soil variability related to pit and mound, canopy cover and individual trees in a Hyrcanian Oriental Beech stand. Phd Thesis, Tarbiat Modares University, 203p. [In Persian].
- Luo, G., Xue, C., Jiang, Q., Xiao, Y., Zhang, F., Guo, S., Shen, Q., & Ling, N. (2020). Soil carbon, nitrogen, and phosphorus cycling microbial populations and their resistance to global change depend on soil C: N: P stoichiometry. Msystems, 5(3), e00162-20. doi: https://doi.org/10.1128/msystems.00162-20
- Molla, E., Getnet, K., & Mekonnen, M. (2022). Land use change and its effect on selected soil properties in the northwest highlands of Ethiopia. Heliyon, 8(8), e10157. doi: https://doi.org/10.1016/j.heliyon.2022.e10157
- Kemmitt, S. J., Wright, D., Goulding, K. W., & Jones, D. L. (2006). pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biology and Biochemistry, 38(5), 898-911. doi: https://doi.org/10.1016/j.soilbio.2005.08.006
- Mulugeta, T., Melese, A., & Wondwosen, T. E. N. A. (2019). Effects of land use types on selected soil physical and chemical properties: The case of Kuyu District, Ethiopia. Eurasian journal of soil science, 8(2), 94-109. doi: 10.18393/ejss.510744
- Kalambukattu, J. G., Singh, R., Patra, A. K., & Arunkumar, K. (2013). Soil carbon pools and carbon management index under different land use systems in the Central Himalayan region. Acta Agriculture Scandinavica, Section B–Soil & Plant Science, 63(3), 200-205. doi: https://doi.org/10.1080/09064710.2012.749940
- Abera, Y., & Bilachew, T. (2011). Effects of land use on soil organic carbon and nitrogen in soils of Bale, Southern Ethiopian. Tropical and Subtropical Agroecosystems, 14(1), 229-235. doi: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v14i1.538
- Tellen, V. A., & Yerima, B. P. (2018). Effects of land use change on soil physicochemical properties in selected areas in the North West region of Cameroon. Environmental systems research, 7(1), 1-29. doi: https://doi.org/10.1186/s40068-018-0106-0
- Chen, C. R., Condron, L. M., Davis, M. R., & Sherlock, R. R. (2001). Effects of land-use change from grassland to forest on soil sulfur and arylsulfatase activity in New Zealand. Soil research, 39(4), 749-757. doi: https://doi.org/10.1071/SR00032
- Moghimian, N., Hosseini, S. M., Kooch, Y., & Darki, B. Z. (2017). Impacts of changes in land use/cover on soil microbial and enzyme activities. Catena, 157, 407-414. doi: https://doi.org/10.1016/j.catena.2017.06.003
- Buraka, T., Elias, E., & Lelago, A. (2023). Effects of land-use-cover-changes on selected soil physicochemical properties along slope position, Coka watershed, Southern Ethiopia. Heliyon, 9(5). e16142. doi: https://doi.org/10.1016/j.heliyon.2023.e16142
- Qi, L. H., Peng, Z. H., Zhang, X. D., Zhou, J. X., Cai, C. J., & Wang, Z. Y. (2007). Species diversity and biomass allocation of vegetation restoration communities on degraded lands. Chinese Journal of Ecology, 26(11), 1697-1702. http://www.cje.net.cn/EN/volumn/volumn_304.shtml
- de Pierri Castilho, S. C., Cooper, M., Dominguez, A., & Bedano, J. C. (2016). Effect of land use changes in eastern amazonia on soil chemical, physical, and biological attributes. Soil Science, 181(3/4), 133-147. doi: 10.1097/SS.0000000000000152
- Vanolli, B. S., Pereira, A. P., Franco, A. L., & Cherubin, M. R. (2023). Edaphic and epigeic macrofauna responses to land use change in Brazil. European Journal of Soil Biology, 117, doi: https://doi.org/10.1016/j.ejsobi.2023.103514
- Persaud, R. (2019). Impact of deforestation on earthworm populations in Guyana's rainforests (No. e27841v1). PeerJ Preprints, 7, e27841v1. doi: https://doi.org/10.7287/peerj.preprints.27841v1
- Sirajul Haque, S. M., Gupta, S. D., & Miah, S. (2014). Deforestation effects on biological and other important soil properties in an upland watershed of Bangladesh. Journal of Forestry Research, 25, 877-885. doi: https://doi.org/10.1007/s11676-014-0534-2
- Borah, M. I. N. A. T. I., & Kakati, L. N. (2013). Abundance and distribution of soil Acarina in natural and degraded forest ecosystems at Pathalipam, Lakhimpur, Assam. International Journal of Scientific & Engineering Research, 12, 1694-1709. doi: http://dx.doi.org/10.9790/2402-08134550
- da Silva, P. M., Bartz, M., Mendes, S., Boieiro, M., Timóteo, S., Azevedo-Pereira, H. M., ... & Sousa, J. P. (2023). Tree canopy enhances Collembola functional richness and diversity across typical habitats of the Gorongosa National Park (Mozambique). Applied Soil Ecology, 190, doi: https://doi.org/10.1016/j.apsoil.2023.105010
- Afzal, S., Nesar, H., Imran, Z., & Ahmad, W. (2023). Change in land-use from natural forest impacts functional composition and metabolic footprint of soil nematode community in Western Himalayas. Acta Ecologica Sinica, 43(5), 842-852. doi: https://doi.org/10.1016/j.chnaes.2022.12.004
- Han, X., Liang, Z., Wang, M., Chen, Y., Hu, C., & Wu, S. (2013). Effect of agricultural land use types on soil protozoa community. Journal of Henan Agricultural Sciences, 42(9), 54-57. https://www.cabidigitallibrary.org/doi/full/10.5555/20133388292
- Fan, L. C., Yang, M. Z., & Han, W. Y. (2015). Soil respiration under different land uses in eastern China. PloS one, 10(4), e0124198. doi: https://doi.org/10.1371/journal.pone.0124198
- Chen, Q., Yang, F., & Cheng, X. (2022). Effects of land use change type on soil microbial attributes and their controls: Data synthesis. Ecological Indicators, 138, doi: https://doi.org/10.1016/j.ecolind.2022.108852
- Kara, O., & Bolat, I. (2008). The effect of different land uses on soil microbial biomass carbon and nitrogen in Bartın province. Turkish Journal of Agriculture and Forestry, 32(4), 281-288. https://journals.tubitak.gov.tr/agriculture/vol32/iss4/6/
- Li, M., Zhou, X., Zhang, Q. & Cheng, X. (2014). Consequences of afforestation for soil nitrogen dynamics in Central China. Agriculture, Ecosystems and Environment, 183(4), 40-46. doi: https://doi.org/10.1016/j.agee.2013.10.018
- Ferreira, A. C. C., Leite, L. F. C., Araújo, A. S. F. & Eisenhauer, N. (2016). Land use type effects on soil organic Carbon and microbial properties in a semi-arid region of Northeast Brazil. Land Degradation and Development, 27(2): 171-178. doi: https://doi.org/10.1002/ldr.2282
- Kooch, Y. and Bayranvand, M. (2017). Composition of tree species can mediate spatial variability of C and N cycles in mixed beech forests. Forest Ecology and Management, 401(10):55-64.
- Koudahe, K., Allen, S. C., & Djaman, K. (2022). Critical review of the impact of cover crops on soil properties. International Soil and Water Conservation Research, 10(3), 343-354. doi: https://doi.org/10.1016/j.iswcr.2022.03.003
- 79. Zhu, G., Shangguan, Z., Hu, X., & Deng, L. (2021). Effects of land use changes on soil organic carbon, nitrogen and their losses in a typical watershed of the Loess Plateau, China. Ecological Indicators, 133, doi: https://doi.org/10.1016/j.ecolind.2021.108443
|