- Garg, K. K., Anantha, K. H., Nune, R., Akuraju, V. R., Singh, P., Gumma, M. K., ... & Ragab, R. (2020). Impact of land use changes and management practices on groundwater resources in Kolar district, Southern India. Journal of Hydrology: Regional Studies, 31, 100732.doi.org/10.1016/j.ejrh.2020.100732.
- Bouma, J., Bonfante, A., Basile, A., van Tol, J., Hack-ten Broeke, M. J. D., Mulder, M., ... & Hirmas, D. R. (2022). How can pedology and soil classification contribute towards sustainable development as a data source and information carrier?. Geoderma, 424, 115988. doi.org/10.1016/j.geoderma.2022.115988.
- Sharififar, A., Sarmadian, F., & Minasny, B. (2019a). Mapping imbalanced soil classes using Markov chain random fields models treated with data resampling technique. Computers and Electronics in Agriculture, 159, 110-118. doi.org/10.1016/j.compag.2019.03.006.
- Lagacherie, P., Arrouays, D., & Walter, C. (2013). Cartographie numérique des sols: principe, mise en œuvre et potentialités. Etude et Gestion des Sols, 20(1), 83-98.
- Wadoux, A. M. C., Brus, D. J., & Heuvelink, G. B. (2019). Sampling design optimization for soil mapping with random forest. Geoderma, 355, 113913.doi.org/10.1016/j.geoderma.2019.113913.
- Vincent, S., Lemercier, B., Berthier, L., & Walter, C. (2018). Spatial disaggregation of complex Soil Map Units at the regional scale based on soil landscape relationships. Geoderma, 311, 130-142.doi.org/10.1016/j.geoderma.2016.06.006.
- Wadoux, A. M. C., Minasny, B., & McBratney, A. B. (2020). Machine learning for digital soil mapping: Applications, challenges and suggested solutions. Earth-Science Reviews, 210, 103359. doi.org/10.1016/j.earscirev.2020.103359
- Sharififar, A., & Sarmadian, F. (2023). Coping with imbalanced data problem in digital mapping of soil classes. European Journal of Soil Science, 74(3), e13368. doi.org/10.1111/ejss.13368
- Rahimi mashkale, M., Delavar, M. A., jamshidi, M., & sharififar, A. (2023). Improving the classification of Soil imbalanced data using machine learning algorithms in Some Part of Zanjan provice land. Journal of Agricultural Engineering Soil Science and Agricultural Mechanization, Scientific Journal of Agriculture, 46(1), 61-82. doi: 10.22055/AGEN.2023.43838.1667.[In Persian]
- Helfenstein, A., Mulder, V. L., Heuvelink, G. B., & Okx, J. P. (2022). Tier 4 maps of soil pH at 25 m resolution for the Netherlands. Geoderma, 410, 115659. doi.org/10.1016/j.geoderma.2021.115659.
- Heung, B., Ho, H. C., Zhang, J., Knudby, A., Bulmer, C. E., & Schmidt, M. G. (2016). An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping. Geoderma, 265, 62-77.doi.org/10.1016/j.geoderma.2015.11.014
- Sharififar, A., Sarmadian, F., Malone, B. P., & Minasny, B. (2019b). Addressing the issue of digital mapping of soil classes with imbalanced class observations. Geoderma, 350, 84-92. doi.org/10.1016/j.geoderma.2019.05.016.
- Taghizadeh-Mehrjardi, R., Mahdianpari, M., Mohammadimanesh, F., Behrens, T., Toomanian, N., Scholten, T., & Schmidt, K. (2020). Multi-task convolutional neural networks outperformed random forest for mapping soil particle size fractions in central Iran. Geoderma, 376, 114552. doi.org/10.1016/j.geoderma.2020.114552.
- Zhu, B., Baesens, B., & vanden Broucke, S. K. (2017). An empirical comparison of techniques for the class imbalance problem in churn prediction. Information sciences, 408, 84-99. doi.org/10.1016/j.ins.2017.04.015.
- Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., & Bing, G. (2017). Learning from class-imbalanced data: Review of methods and applications. Expert systems with applications, 73, 220-239.doi.org/10.1016/j.eswa.2016.12.035.
- Padarian, J., Minasny, B., & McBratney, A. B. (2019). Machine learning and soil sciences: A review aided by machine learning tools. doi:10.5194/soil-6-35-2020.
- Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B., & Gräler, B. (2018). Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. Peer J, 6, e5518. doi: 10.7717/peerj.5518.
- Taghizadeh-Mehrjardi, R., Minasny, B., Toomanian, N., Zeraatpisheh, M., Amirian-Chakan, A., & Triantafilis, J. (2019). Digital mapping of soil classes using ensemble of models in Isfahan region, Iran. Soil Systems, 3(2), 37. doi:10.3390/soilsystems3020037.
- Jing, X. Y., Zhang, X., Zhu, X., Wu, F., You, X., Gao, Y., ... & Yang, J. Y. (2019). Multiset feature learning for highly imbalanced data classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(1), 139-156.doi:10.1109/TPAMI.2019.2929166.
- Zhang, C., Tan, K. C., Li, H., & Hong, G. S. (2019). A cost-sensitive deep belief network for imbalanced classification. IEEE transactions on neural networks and learning systems, 30(1), 109-122. doi:10.1109/TNNLS.2018.2832648.
- Mienye, I. D., & Sun, Y. (2021). Performance analysis of cost-sensitive learning methods with application to imbalanced medical data. Informatics in Medicine Unlocked, 25, 100690. doi.org/10.1016/j.imu.2021.100690.
- Ma, Y., Zhao, K., Wang, Q., & Tian, Y. (2020). Incremental cost-sensitive support vector machine with linear-exponential loss. IEEE Access, 8, 149899-149914. doi:10.1109/ACCESS.2020.3015954.
- Statistical Yearbook of Zanjan Province. (2019). Land and Climate, National Statistics Organization. [In Persian]
- Soil and Water Research Institute. (2010). Site Selection, Soil Survey and Land Evaluation for Development of Orchards in Zanjan Province, Iran. [In Persian]
- Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils 1. Agronomy journal, 54(5), 464-465. doi:10.2134/agronj1962.00021962005400050028x.
- Perry Jr, C. R., & Lautenschlager, L. F. (1984). Functional equivalence of spectral vegetation indices. Remote sensing of environment, 14(1-3), 169-182. doi:10.1016/0034-4257(84)90013-0.
- Lanyon, L. E., & Heald, W. R. (1983). Magnesium, calcium, strontium, and barium. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9, 247-262. doi:10.2134/agronmonogr9.2.2ed.c14.
- Sumner, M. E., & Miller, W. P. (1996). Cation exchange capacity and exchange coefficients. Methods of soil analysis: Part 3 Chemical methods, 5, 1201-1229. doi:10.2136/sssabookser5.3.c40.
- Richards, L. A. (Ed.). (1954). Diagnosis and improvement of saline and alkali soils (No. 60). US Government Printing Office. doi:10.1097/00010694-195408000-00012.
- Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science, 37(1), 29-38. doi:10.1097/00010694-193401000-00003.
- Artieda, O., Herrero, J. and Drohan, P.J., 2006. Refinement of the differential water loss method for gypsum determination in soils. Soil Science Society of America Journal, 70(6), pp.1932-1935. doi:10.2136/sssaj2006.0043N.
- Soil Survey Staff. (2022). Keys to soil taxonomy, 13th edition. USDA Natural Resources Conservation Service.
- Olaya, V. I. C. T. O. R. (2004). A gentle introduction to SAGA GIS. The SAGA User Group eV, Gottingen, Germany, 208.
- Zinck, J. A., Metternicht, G., Bocco, G., & Del Valle, H. (2016). Geopedology. An integration of geomorphology and pedology for soils and landscape studies: Springer International Publishing Switzerland, 556p. doi:10.1007/978-3-319-19159-1.
- Kuhn, M., & Johnson, K. (2013). Applied predictive modeling (Vol. 26, p. 13). New York: Springer. doi:10.1007/978-1-4614-6849-3.
- Breiman, L. (2001). Random forests. Machine learning, 45, 5-32. doi:10.1023/A:1010933404324.
- Breiman, L., & Cutler, A. (2004). Random Forests. Department of Statistics, University of Berkeley. doi:10.1214/10-AOAS427.
- Zhao, P., Zhang, Y., Wu, M., Hoi, S. C., Tan, M., & Huang, J. (2018). Adaptive cost-sensitive online classification. IEEE Transactions on Knowledge and Data Engineering, 31(2), 214-228. doi:10.1109/TKDE.2018.2826011.
- He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on knowledge and data engineering, 21(9), 1263-1284. doi:10.1109/TKDE.2008.239.
- Moepya, S. O., Akhoury, S. S., & Nelwamondo, F. V. (2014, December). Applying cost-sensitive classification for financial fraud detection under high class-imbalance. In 2014 IEEE international conference on data mining workshop (pp. 183-192). IEEE.doi:10.1109/ICDMW.2014.141
- Jin, C., & Jin, S. W. (2018). Content-based image retrieval model based on cost sensitive learning. Journal of Visual Communication and Image Representation, 55, 720-728. doi:10.1016/j.jvcir.2018.08.009
- Zhang, J., Schmidt, M. G., Heung, B., Bulmer, C. E., & Knudby, A. (2022). Using an ensemble learning approach in digital soil mapping of soil pH for the Thompson-Okanagan region of British Columbia. Canadian Journal of Soil Science, 102(03), 579-596. doi:10.1139/cjss-2021-0091.
- Brodersen, K. H., Ong, C. S., Stephan, K. E., & Buhmann, J. M. (2010, August). The balanced accuracy and its posterior distribution. In 2010 20th international conference on pattern recognition (pp. 3121-3124). IEEE. doi:10.1109/ICPR.2010.764.
- Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote sensing of environment, 37(1), 35-46. doi.org/10.1016/00344257(91)90048-B.
- Rahimi Mashkaleh, M., amirdelavar, M., jamshidi, M., & sharififar, A. (2023). Modeling Spatial Distribution of Soil Classes Using Machine Learning Algorithms in Some Parts of Zanjan Provice. Iranian Journal of Soil Research, 37(2), 147-165. doi: 10.22092/ijsr.2023.361649.698. [In Persian]
- Jensen, J. R. (2005). Introductory image processing: A remote sensing perspective.
- Kang, M., Liu, Y., Wang, M., Li, L., & Weng, M. (2022). A random forest classifier with cost-sensitive learning to extract urban landmarks from an imbalanced dataset. International Journal of Geographical Information Science, 36(3), 496-513. doi.org/10.1080/13658816.2021.1977814.
- Devi, D., Biswas, S. K., & Purkayastha, B. (2019). A cost-sensitive weighted random forest technique for credit card fraud detection. In 2019 10th international conference on computing, communication and networking technologies (ICCCNT). 1-6. doi:10.1109/ICCCNT45670.2019.8944885.
- Fernández, A., del Jesus, M. J., & Herrera, F. (2009). On the influence of an adaptive inference system in fuzzy rule-based classification systems for imbalanced data-sets. Expert Systems with Applications, 36(6), 9805-9812. doi.org/10.1016/j.eswa.2009.02.048.
- Li, R., Pan, X., Wu, H., Huang, Y., Li, W., & Li, M. (2021). A comparative study of cast-sensitive methods in digital soil mapping using machine learning algorithms. doi.org/10.2139/ssrn.4658128Catena, 208, 105266.
- Li, H., Li, J., Zhao, Y., Gong, M., Zhang, Y. & Liu, T. (2021). Cost-sensitive self-paced learning with adaptive regularization for classification of image time series. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14,11713-11727. doi: 10.1109/JSTARS.2021.3127754.
- Wang, N., Liang, R., Zhao, X., & Gao, Y. (2021). Cost-sensitive hypergraph learning with f-measure optimization. IEEE Transactions on Cybernetics. doi:10.1109/TCYB.2021.3126756.
- Wong, M. L., Seng, K., & Wong, P. K. (2020). Cost-sensitive ensemble of stacked denoising autoencoders for class imbalance problems in business domain. Expert Systems with Applications, 141, 112918. doi.org/10.1016/j.eswa.2019.112918.
- Fan, Y., Zhang, C., Liu, Z., Qiu, Z., & He, Y. (2019). Cost-sensitive stacked sparse auto-encoder models to detect striped stem borer infestation on rice based on hyperspectral imaging. Knowledge-Based Systems, 168, 49-58.doi.org/10.1016/j.knosys.2019.01.003.
- Yu, H., Sun, C., Yang, X., Zheng, S., Wang, Q., & Xi, X. (2018). LW-ELM: a fast and flexible cost-sensitive learning framework for classifying imbalanced data. IEEE Access, 6, 28488-28500. doi: 10.1109/ACCESS.2018.2839340.
|