
تعداد نشریات | 13 |
تعداد شمارهها | 648 |
تعداد مقالات | 6,756 |
تعداد مشاهده مقاله | 9,425,949 |
تعداد دریافت فایل اصل مقاله | 8,799,267 |
اثر صمغهندی و سولوپتاس بر شاخصهای فنولوژیکی و فیزیولوژیکی مرتبط با تحمل سرمای بهاره انگور | ||
پژوهشهای تولید گیاهی | ||
دوره 32، شماره 2، تیر 1404، صفحه 59-79 اصل مقاله (780.79 K) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/jopp.2024.22382.3139 | ||
نویسندگان | ||
نسیم پاوه1؛ روح لله کریمی* 2 | ||
1دانشآموخته کارشناسیارشد علوم باغبانی، دانشکده کشاورزی، دانشگاه ملایر، ملایر، ایران | ||
2نویسنده مسئول، دانشیار گروه علوم باغبانی و فضای سبز، دانشکده کشاورزی، دانشگاه ملایر، ملایر، ایران | ||
چکیده | ||
سابقه و هدف: سرمای بهاره یکی از مشکلات اساسی انگور کاری ها در مناطق معتدله است که در مواردی شدت صدمات بسیار بالا بوده و گاهی کل محصول از بین خواهد رفت. به همین سبب استفاده از ترکیباتی که باعث تاخیر در شکوفایی جوانه ها و تحمل به سرما در تاک ها شود ضروری می باشد. لذا پژوهش حاضر باهدف بررسی اثر محلول پاشی صمغ هندی و سولوپتاس بر زمان شکوفایی جوانه و تحمل به سرمای انگور بیدانه سفید انجام گرفت. مواد و روشها: این آزمایش به صورت فاکتوریل (3×2) بر پایه طرح بلوکهای کامل تصادفی با 3 تکرار (هر تکرار یک تاک) اجرا شد. فاکتور اول شامل صمغهندی در دو غلظت ( 0 و 5/0 درصد) و فاکتور دوم شامل سولوپتاس در سه غلظت (0، 1 و 2 درصد) بود. محلولپاشی غلظتهای مختلف صمغهندی و سولوپتاس طی دو مرحله در اواخر اسفند و اوایل فروردین درست کمی قبل از متورم شدن تا تورم کامل جوانهها با استفاده از یک سمپاش 10 لیتری تا مرحله آب چک روی تاکها انجام شد. یافتهها: بر اساس نتایج بیشترین تاثیر کاربرد صمغهندی و سولوپتاس بر زمان باز شدن جوانه مربوط به تاکهای تیمار شده با صمغهندی 5/0 درصد در ترکیب با سولوپتاس 2 درصد بود و کمترین میزان تاثیر مربوط به تاکهای شاهد میباشد. همچنین بیشترین میزان تاثیر بر روز تا گلدهی مربوط به تاکهای تیمار شده با صمغهندی 5/0 درصد به تنهایی بود و کمترین میزان مربوط به تاکهای تیمار شده با پتاسیم 1 درصد میباشد. همچنین بیشترین درصد تشکیل میوه مربوط به تاکهای تیمار شده با ترکیب صمغهندی 5/0 درصد و سولوپتاس 1 درصد بود. بیشترین و کمترین محتوای نشت یونی به ترتیب مربوط به تاکهای شاهد و تاکهای تیمار شده با صمغهندی 5/0 درصد + سولوپتاس 2 درصد بود. همچنین بیشترین محتوای مالوندیآلدهید و پراکسیدهیدروژن مربوط به تاکهای شاهد و کمترین محتوی این شاخصهای پایداری غشاء مربوط به تاکهای تیمارشده با ترکیب صمغهندی 5/0 درصد + سولوپتاس 1 درصد بود. بیشترین محتوای پرولین و کربوهیدرات محلول مربوط به تاکهای تیمار شده با صمغهندی 5/0 درصد در ترکیب با سولوپتاس 1 درصد بود و کمترین میزان محتوای این تنظیم کنندههای اسمزی مربوط به تاکهای شاهد بود. بیشترین محتوای فنول کل مربوط به تاکهای تیمار شده با سولوپتاس 1 درصد و کمترین محتوی فنول کل مربوط به تاکهای شاهد بود. بیشترین محتوای فلانوئید مربوط به تاکهای تیمار شده با ترکیب صمغهندی 5/0 درصد + سولوپتاس 1 درصد بود و کمترین محتوی فلاونوئید کل مربوط به صمغ هندی 5/0 درصد به تنهایی میباشد. محتوای کلروفیل برگ در تاکهای تیمار شده با پتاسیم 1 درصد به تنهایی بالاترین مقدار بود. بیشترین فعالیت آنزیم کاتالاز مربوط به تاکهای تیمار شده با صمغهندی 5/0 درصد در ترکیب با سولوپتاس 2 درصد بود و بیشترین فعالیت گایاکولپراکسیداز و محتوای پروتئین مربوط به تاکهای تیمار شده با صمغهندی 5/0 درصد + سولوپتاس 1 درصد میباشد. بیشترین محتوای اسید آبسیزیک و کمترین محتوای جیبرلین مربوط به تاکهای تیمارشده با صمغهندی 5/0 درصد + سولوپتاس1 درصد بود. همچنین بیشترین محتوای اسپرمین مربوط به تاکهای تیمار شده با سطح دوم صمغهندی با ترکیب با سطح دوم سولوپتاس بود. بیشترین محتوای اسپرمیدین مربوط به تاکهای تیمار شده با سولوپتاس 2 درصد به تنهایی بود. نتیجهگیری: در کل کاربرد صمغهندی به عنوان یک پوشش پلیساکاریدی در ترکیب با سولوپتاس به عنوان یک منبع پتاسیم با تمدید زمان خواب و افزایش غلظت اسید ابسیزیک و قندهای محلول منجر به تاخیر در شکوفایی جوانه و افزایش تحمل به سرمای بهاره انگور شد. | ||
کلیدواژهها | ||
انگور؛ اسید ابسیزیک؛ پرولین؛ تحمل به سرما؛ شکوفایی جوانه | ||
مراجع | ||
1.Keller, M. (2015). The science of grapevines. The Science of Grapevines. Anatomy and Physiology, 2nd ed.; Elsevier Academic Press: London, UK.
2.Karimi, R. (2014). Evaluation of the effect of nutrition and abscisic acid on grape cold tolerance. Ph.D Dissertation in Horticulture. BuAli Sina University, pp 205. [In Persian]
3.Karimi, R. (2019). Spring frost tolerance increase in Sultana grapevine by early season application of calcium sulfate and zinc sulfate. Journal of Plant Nutrition, 42(19), 2666-2681.
4.Karimi, R. (2020). Cold hardiness evaluation of 20 commercial table grape (Vitis vinifera L.) cultivars. International Journal of Fruit Science, 20(3), 433-450.
5.Beheshti Rooy, S. S., Hosseini Salekdeh, G., Ghabooli, M., Gholami, M., & Karimi, R. (2017). Cold-induced physiological and biochemical responses of three grapevine cultivars differing in cold tolerance. Acta physiologiae plantarum, 39, 1-13.
6.Eshghi, S., Karimi, R., Shiri, A., Karami, M., & Moradi, M. (2021). The novel edible coating based on chitosan and gum ghatti to improve the quality and safety of ‘Rishbaba’table grape during cold storage. Journal of Food Measurement and Characterization, 15(4), 3683-3693.
7.Juurakko, C. L., & Walker, V. K. (2021). Cold acclimation and prospects for cold-resilient crops. Plant Stress, 2, 100028.
8.Quitadamo, F., De Simone, V., Beleggia, R., & Trono, D. (2021). Chitosan-induced activation of the antioxidant defense system counteracts the adverse effects of salinity in durum wheat. Plants, 10(7), 1365. 9.Singh, R., Priya, H., Kumar, S. R., Trivedi, D., Prasad, N., Ahmad, F., & Rana, S. S. (2024). Gum Ghatti: A Comprehensive Review on Production, Processing, Remarkable Properties, and Diverse Applications. ACS omega, 9(9), 9974-9990.
10.Wang, A., Li, J., Al-Huqail, A. A., Al-Harbi, M. S., Ali, E. F., Wang, J., & Eissa, M. A. (2021). Mechanisms of chitosan nanoparticles in the regulation of cold stress resistance in banana plants. Nanomaterials, 11(10), 2670.
11.Safamanesh, H. (2022). Effect of foliar spray of chitosan on budbreak time and spring cold tolerance of Yaghooti grapevine (Vitis vinifera L.). MSc Thesis in Horticulture, Malayer University, pp, 105. [In Persian] 12.Karimi, R. (2017). Potassium-induced freezing tolerance is associated with endogenous abscisic acid, polyamines and soluble sugars changes in grapevine. Scientia Horticulturae, 215, 184-194.
13.Waraich, E. A., Ahmad, R., Halim, A., & Aziz, T. (2012). Alleviation of temperature stress by nutrient management in crop plants: a review. Journal of Soil Science and Plant Nutrition, 12(2), 221-244.
14.Marschner, H. (2012). Mineral Nutrition of Higher Plants. Second edition, San Diego: Academic Press.
15.Hafez, Y., Attia, K., Alamery, S., Ghazy, A., Al-Doss, A., Ibrahim, E., & Abdelaal, K. (2020). Beneficial effects of biochar and chitosan on antioxidative capacity, osmolytes accumulation, and anatomical characters of water-stressed barley plants. Agronomy, 10(5), 630.
16.ALKahtani, M. D., Attia, K. A., Hafez, Y. M., Khan, N., Eid, A. M., Ali, M. A., & Abdelaal, K. A. (2020). Chlorophyll fluorescence parameters and antioxidant defense system can display salt tolerance of salt acclimated sweet pepper plants treated with chitosan and plant growth promoting rhizobacteria. Agronomy, 10(8), 1180.
17.Campos, P. S., nia Quartin, V., chicho Ramalho, J., & Nunes, M. A. (2003). Electrolyte leakage and lipid degradation account for cold sensitivity in leaves ofCoffea sp. plants. Journal of Plant Physiology, 160(3), 283-292.
18.Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198.
19.Velikova, V., & Loreto, F. (2005). On the relationship between isoprene emission and thermotolerance in Phragmites australis leaves exposed to high temperatures and during the recovery from a heat stress. Plant, Cell & Environment, 28(3), 318-327.
20.Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254.
21.Bates, L. S., Waldren, R. P. A., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207.
22.Velioglu, Y., Mazza, G., Gao, L., & Oomah, B. D. (1998). Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry, 46(10), 4113-4117.
23.Yemm, E. W., & Willis, A. (1954). The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal, 57(3), 508.
24.Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and cell physiology, 22(5), 867-880.
25.Bergmeyer, N. (1970). Methoden der Enzymatischen Analyse, vol 1. AkademieVerlag, Berlin, pp. 636-647.
26.Herzog, V., & Fahimi, H. D. (1973). Determination of the activity of peroxidase. Analytical Biochemistry, 55, 554-562.
27.Walter, H. J. P., & Geuns, J. M. (1987). High speed HPLC analysis of polyamines in plant tissues. Plant Physiology, 83(2), 232-234.
28.Li, Z., Zhao, X., Sandhu, A. K., & Gu, L. (2010). Effects of exogenous abscisic acid on yield, antioxidant capacities, and phytochemical contents of greenhouse grown lettuces. Journal of Agricultural and Food Chemistry, 58(10), 6503-6509.
29.Karimi, R., Saberi, A., & Khadivi, A. (2021). Effects of foliar spray of agricultural grade mineral oil in springtime, in combination with potassium and calcium sulfates on the phenological and biophysical indices of clusters, and foliar nutritional levels in grapevine (Vitis vinifera L.) cv. Sultana (Id. Thompson seedless, Sultanina). Biological Research, 54.
30.Ershadi, A., Karimi, R., & Mahdei, K. N. (2016). Freezing tolerance and its relationship with soluble carbohydrates, proline and water content in 12 grapevine cultivars. Acta Physiologiae Plantarum, 38(1), 1-10.
31.Sarikhani, H., Haghi, H., Ershadi, A., Esna-Ashari, M., & Pouya, M. (2014). Foliar application of potassium sulphate enhances the cold-hardiness of grapevine (Vitis vinifera L.). The Journal of Horticultural Science and Biotechnology, 89(2), 141-146.
32.Shin, K. S., Chakrabarty, D., & Paek, K. Y. (2002). Sprouting rate, change of carbohydrate contents and related enzymes during cold treatment of lily bulblets regenerated in vitro. Scientia Horticulturae, 96(1-4), 195-204.
33.Kumaraswamy, R. V., Saharan, V., Kumari, S., Choudhary, R. C., Pal, A., Sharma, S. S., & Biswas, P. (2021). Chitosan-silicon nanofertilizer to enhance plant growth and yield in maize (Zea mays L.). Plant Physiology and Biochemistry, 159, 53-66.
34.Cansev, A., Gulen, H., Celik, G., & Eris, A. (2012). Alterations in total phenolic content and antioxidant capacity in response to low temperatures in olive (Olea europaea L. “Gemlik”). Plant Arch, 12(1), 489-494.
35.Attia, M. S., Osman, M. S., Mohamed, A. S., Mahgoub, H. A., Garada, M. O., Abdelmouty, E. S., & Abdel Latef, A. A. H. (2021). Impact of foliar application of chitosan dissolved in different organic acids on isozymes, protein patterns and physio-biochemical characteristics of tomato grown under salinity stress. Plants, 10(2), 388, 1-23.
36.Chien, P. J., Sheu, F., & Yang, F. H. (2007). Effects of edible chitosan coating on quality and shelf life of sliced mango fruit. Journal of Food Engineering, 78(1), 225-229.
37.Karimi, R., Ershadi, A., Rezaei Nejad, A., & Khanizadeh, S. (2016). Abscisic acid alleviates the deleterious effects of cold stress on ‘Sultana’grapevine (Vitis vinifera L.) plants by improving the anti-oxidant activity and photosynthetic capacity of leaves. The Journal of Horticultural Science and Biotechnology, 91(4), 386-395.
38.Roussos, P. A., Ntanos, E., Tsafouros, A., & Denaxa, N. K. (2020). Strawberry physiological and biochemical responses to chilling and freezing stress and application of alleviating factors as countermeasures. Journal of Berry Research, 10(3), 437-457.
39.Wang, D., & Gao, Z. (2016). Expression of ABA metabolism-related genes suggests similarities and differences between seed dormancy and bud dormancy of peach (Prunus persica). Frontiers in Plant Science, 6, 170443.
41.Ahmad, B., Zaid, A., Sadiq, Y., Bashir, S., & Wani, S. H. (2019). Role of selective exogenous elicitors in plant responses to abiotic stress tolerance. Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches, 273-290.
42.Zeng, Y. H., Zahng, Y. P., Xiang, J., Hui, W. U., Chen, H. Z., Zhang, Y. K., & Zhu, D. F. (2016). Effects of chilling tolerance induced by spermidine pretreatment on antioxidative activity, endogenous hormones and ultrastructure of indica-japonica hybrid rice seedlings. Journal of Integrative Agriculture, 15(2), 295-308. | ||
آمار تعداد مشاهده مقاله: 252 تعداد دریافت فایل اصل مقاله: 23 |