
تعداد نشریات | 13 |
تعداد شمارهها | 626 |
تعداد مقالات | 6,517 |
تعداد مشاهده مقاله | 8,746,984 |
تعداد دریافت فایل اصل مقاله | 8,317,571 |
ارزیابی تاثیر کاربرد نانوهیدروکسیآپاتیت بر تثبیت کادمیم در یک خاک آهکی آلوده | ||
مجله پژوهشهای حفاظت آب و خاک | ||
مقاله 4، دوره 25، شماره 3، مرداد و شهریور 1397، صفحه 63-78 اصل مقاله (1.44 M) | ||
نوع مقاله: مقاله کامل علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22069/jwsc.2018.14524.2934 | ||
نویسندگان | ||
زهره فرزانگان* 1؛ علیرضا آستارایی2؛ امیر فتوت3؛ امیر لکزیان4 | ||
1علوم خاک، دانشکده کشاورزی، دانشگاه فردوسی ، مشهد، ایران | ||
2دانشگاه فردوسی مشهد | ||
3استاد ، گروه علوم خاک،دانشکده کشاورزی، دانشگاه فردوسی مشهد | ||
4دانشکده کشاورزی، دانشگاه فردوسی مشهد | ||
چکیده | ||
سابقه و هدف: کادمیم یکی از متداولترین آلایندههای زیست محیطی است که میتواند اثر نامطلوبی بر روی همه ارگانیسمهای زنده داشته باشد. از این رو یک روش پالایشی صحیح برای کاهش فراهمی فلز در خاک مورد نیاز است. از آنجا که نانومواد واکنشپذیری و ظرفیت جذب سطحی بیشتری نسبت به همان مواد در اندازه معمولی دارند، از این رو با گسترش کاربردهای مختلف نانوفناوری در زندگی بشر، ارزیابی کارایی نانوذرات در پالایش خاکهای آلوده مورد توجه محققان قرار گرفت. با این حال تا کنون در مورد امکان تثبیت فلزات سنگین بوسیله نانوهیدروکسیآپاتیت (nHAP) در خاکهای آهکی گزارشی منتشر نشده است. به این منظور آزمایش حاضر با هدف بررسی تاثیر کاربرد nHAP بر تثبیت کادمیم در یک خاک آهکی آلوده طراحی شد. مواد و روشها: این آزمایش در قالب طرح کاملا تصادفی بهصورت آزمایش فاکتوریل با 3 تکرار انجام شد. ابتدا خاک در سه سطح کادمیم (صفر، 20 و 40 میلی گرم بر کیلوگرم خاک با استفاده از نمک کلرید کادمیم) آلوده و به مدت یک ماه در رطوبت 70 % ظرفیت زراعی نگهداری شد. سپس nHAP در سه سطح (صفر، 25/0 و 1 درصد) به نمونههای خاک اضافه شد. پس از 30 روز خواباندن، گونهبندی کادمیم با استفاده از عصارهگیری متوالی و قابلیت جذب کادمیم در خاک با عصارهگیر DTPA مورد بررسی قرار گرفت. برای بررسی تاثیر nHAP در شدت پیوند کادمیم با خاک و تحرک کادمیم در خاک از نمایه تفکیک کاهش یافته (IR) و فاکتور تحرک استفاده گردید. یافتهها: نتایج نشان داد که کاربرد nHAP غلظت کادمیم را در بخش تبادلی و آلی کاهش و در بخش کربناتی بطور معنیداری افزایش داد اما بر مقدار کادمیم در بخش باقیمانده تاثیر معنیداری نداشت. نتایج استخراج کادمیم با DTPA نشان داد که در سطح 40 میلیگرم بر کیلوگرم کادمیم، کاربرد هر دو سطح nHAP غلظت کادمیم قابل جذب را بطور معنیداری کاهش داد. با افزایش مقدار مصرفی nHAP، کارایی آن در کاهش فراهمی کادمیم افزایش یافت. البته مقدار کاهش کادمیم قابل فراهم در خاک چشمگیر نبود. نتایج همچنین نشان داد که با افزایش سطوح nHAP و کادمیم، مقدار IR افزایش یافت که افزایش IR بیانگر کاهش قابلیت استفاده و تحرک کادمیم در خاک است. کاربرد nHAP سبب کاهش معنیدار فاکتور تحرک یعنی موجب کاهش تحرک و خطر زیست محیطی کادمیم گردید. نتیجهگیری: با توجه به نتایج بدست آمده می توان بیان داشت که اگرچه کاربرد nHAP تا حدودی سبب تثبیت و کاهش تحرک کادمیم در خاک گردید، اما به نظر میرسد تاثیر nHAP بر کاهش فراهمی کادمیم چشمگیر نبود. لذا باید در مورد امکان استفاده این ماده در سطح گسترده و اقتصادی بودن کاربرد آن بررسیهای بیشتر صورت پذیرد. | ||
کلیدواژهها | ||
خاک؛ کادمیم؛ گونهبندی؛ نانوهیدروکسیآپاتیت | ||
مراجع | ||
1.Abollino, O., Giacomino, A., Malandrino, M., and Mentasti, E. 2005. The use of sequential extraction procedures for the characterization and management of contaminated soils. Analytical, Environmental and Cultural Heritage Chemistry. 95: 527-538.
2.Basta, N.T., Gradwohl, R., Snethen, K.L., and Schroder, L. 2001. Chemical Immobilization of Lead, Zinc and Cadmium in Smelter-Contaminated Soils Using Biosolids and Rock Phosphate. Environmental Quality. 30: 1222-1230.
3.Boparai, H.K., Joseph, M., and O’Carroll, D.M. 2011. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J. Hazard. Mater. 186: 458-65.
4.Buekers, J., Van Laer, L., Amery, F., Van Buggenhout, S., Maes, A., and Smolders, E. 2007. Role of soil constituents in fixation of soluble Zn, Cu, Ni and Cd added to soils. Europ. J. Soil Sci. 58: 1514-1524.
5.Cao, X.D., Ma, L.Q., Rhue, D.R., and Appel, C.S. 2004. Mechanisms of lead, copper and zinc retention by phosphate rock. Environmental Pollution. 131: 435-444.
6.Chen, J.H., Wang, Y.J., Wang, H.W., Zhou, D.M., and Yang, J.H. 2009. Assessment of remediation of soil heavy metals with nano-particle hydroxyapatite by toxicity characteristic leaching procedure. J. Agro-Environ. Sci. 28: 645-648.
7.Chen, S.B., MA, Y.B., Chen, L., and Xian, K. 2010. Adsorption of aqueous Cd2+, Pb2+, Cu2+ ions by nano-hydroxyapatite: Single- and multi-metal competitive adsorption study. Geochemical. 44: 233-239.
8.Cui, H., Zhou, J., Zhao, Q., Shi, Y., Mao, J., Fang, G., and Liang, J. 2013. Fractions of Cu, Cd and enzyme activities in a contaminated soil as affected by applications of micro-and nanohydroxyapatite. J. Soil Sed. 13: 742-752.
9.Ding, L., Li, J., Liu, W., Zuo, Q., and Liang, S.X. 2017. Influence of Nano-Hydroxyapatite on the Metal Bioavailability, Plant Metal Accumulation and Root Exudates of Ryegrass for Phytoremediation in Lead-Polluted Soil. Inter. J. Environ. Res. Pub. Health. 14: 532-540.
10.Eriksson, J.E. 1989. The influence of pH, soil type and time on adsorption and uptake by plants of Cd added to the soil. Water, Air and Soil Pollution. 48: 317-335.
11.Filgueiras, A.V., Lavilla, I., and Bendicho, C. 2002. Chemical sequential extraction for metal partitioning in environmental solid samples. J. Environ. Monitor. 4: 823-857.
12.Fu, H., Zhang, B., Yang, J., Liu, H., Yang, S., and Zhao, P. 2018. Cadmium and Lead Speciation as Affected by Soil Amendments in Calcareous Soil. Environmental Engineering Science.
13.Gee, G.W., and Bauder., J.W. 1982. Hydrometer Method. P 383-314, In: Klute, A. (ed), Methods of Soil Analysis: Physical Properties, Part 1, second ed. Agron Monogr, No 9, Madison WI: ASA and SSSA.
14.Han, F.X., Banin, A., Kingery, W.L., Triplett, G.B., Zhou, L.X., and Zheng, S.J. 2003. New approach to studies of heavy metal redistribution in soil. Advances in Environmental Research. 8: 113-120.
15.He, M., Shi, H., Zhao, X., Yu, Y., and Qu, B. 2013. Immobilization of Pb and Cd in contaminated soil using nanocrystallite hydroxyapatite. Procedia Environmental Sciences. 18: 657-665.
16.Hoodji, M., and Afyuni, M. 2009. The Effect of Sewage Sludge and CdCl2 Application on Cadmium Transport in Soil and Plant Uptake', J. Environ. Sci. Technol. 11: 2. 47-58. (In Persian) 17.Jalali, M., and Arfania, H. 2011. Distribution and fractionation of cadmium, copper, lead, nickel and zinc in a calcareous sandy soil receiving municipal solid waste. Environmental Monitoring and Assessment. 173: 241-250.
18.Jalali, M., and Khanboluki, G. 2008. Redistribution of zinc, cadmium and lead among soil fractions in a sandy calcareous soil due to application of poultry litter. Environmental Monitoring and Assessment. 136: 327-335.
19.Kabala, C., and Singh, B.R. 2001. Fractionation and mobility of copper, lead and zinc in soil profiles in the vicinity of a copper smelter. J. Environ. Qual. 30: 485-492.
20.Kabata-Pendias A., and Pendias H. 2010. Trace elements in soils and plants. CRC Press. Boca Ratton. Florida. 548p.
21.Khadivi Borujeni, E., Nourbakhsh, F., Afyuni, M., and Shariatmadari, H. 2007. Forms of Pb, Ni and Cd in a Sewage Sludge - treated Calcareous Soil. J. Water Soil. 11: 1. 41-54. (In Persian) 22.Khanmirzaee, A., Bazargan, K., Moezzi, A., and Shahbazi, K. 2011. The relationship between the chemical forms of Cd concentration in wheat grain in some soils of Golestan province. J. Soil Sci. (Soil and Water). 26: 347-357.
23.Li, Zh., Zhou, M.M., and Lin, W. 2014. The research of nano particle and micro particle hydroxyapatite amendment in multiple heavy metals contaminated soil remediation. J. Nanomater. 2014. 24.Lindsay, W.L., and Norvell, W.A. 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society American. 42: 421-428.
25.Loeppert, R.H., and Suarez, L. 1996. Carbonate and gypsum. In ‘Methods of soil 10 analysis. Part 3. Chemical methods’. (Ed. D.L. Sparks). P 437-474, Soil Science Society of 11 America: Madison, WI. 26.Ma, L.Q., and Rao, G.N. 1997. Chemical fractions of Cadmium, Copper, Nickel and Zinc contaminated soils. J. Environ. Qual. 26: 259-264.
27.Ma, Q.Y., Traina, S.J., Logan, T.J., and Ryan, J.A. 1994. Effects of aqueous Al, Cd, Cu, Fe (II), Ni and Zn on Pb immobilization by hydroxyapatite. Environmental Science & Technology, 28: 1219-1228.
28.McBride, M.B. 1995. Toxic Metal accumulation from agricultural use of sludge: Are USEPA regulations protective? J. Environ. Qual. 24: 5-18.
29.McGrath, S.P., and Segara, J. 1992. Chemical extractability of heavy metals during after and long-term applications of sewage sludge to soil. Soil Science. 43: 313-321.
30.Miretzky, P., and Rodriguez Avendano, M., Munoz, C., and Carrillo-Chavez, A. 2011. Use of partition and redistribution indexes for heavy metal soil distribution after contamination with a multi-element solution. Soils Sediments. 11: 619-627.
31.Mobasherpour, I., Salahi, E., and Pazouki, M. 2011. Removal of divalent cadmium cations by means of synthetic nano crystallite hydroxyapatite. Desalination. 266: 142-148.
32.Paramasivam, S., Lettimore, J.M., Alva, A.K., Jayaraman, K., and Harper, L.M. 2014. Chemical fractionation of Cu, Zn, Cd, Cr and Pb in sewage sludge amended soils at the end of 65-d sorghum-sudan grass growth. Environmental Science and Health. 49: 1304-1315.
33.Rajaie, M., Karimian, N., Maftoun, M., Yasrebi, M., and Assad, M.T. 2006. Chemical forms of cadmium in two calcareous soil textural classes as affected by application of cadmium-enriched compost and incubation time. Geoderma. 136: 533-541.
34.Ramesh, S.T., Rameshbabu, N., Gandhimathi, R., Srikanth Kumar M., and Nidheesh. P.V. 2013. Adsorptive removal of Pb (II) from aqueous solution using nano-sized hydroxyapatite. Applied Water Science. 3: 105-113.
35.Rhoades, J.D. 1982. Soluble salts. P 167-179, In: Page, A.L. (ed), Methods of Soil Analysis: Chemical and microbiological properties, Part 2. 2nd Ed. Agron. Monogr. No.9, ASA and SSSA, Madison WI.
36.Shrivastava, R., Upreti, R.K., and Chaturvedi, U.C. 2003. Various cells of the immune system and intestine differ in their capacity to reduce hexavalent chromium. FEMS Immunology & Medical Microbiology. 38: 65-70.
37.Sposito, G., Lund, J., and Change, A. C. 1982. Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd and Pb in solid phases. Soil Sci. Soc. Amer. J. 46: 260-264. 38.Stietiya, M.H., Duqqah, M., Udeigwe, T., Zubi, R., and Ammari, T. 2014. Fate and distribution of heavy metals in wastewater irrigated calcareous soils. Sci. World J. 2014.
39.Tang, X.Y., Zhu, Y.G., Cui, Y.Sh., Duan, J., and Tang, C. 2006. The effect of ageing on the bioaccessibility and fractionation of cadmium in some typical soils of China. Environment International. 32: 682-689.
40.Varasteh Khanlari, Z., and Jalali, M. 2008. Concentrations and chemical speciation of five heavy metals (Zn, Cd, Ni, Cu and Pb) in selected agricultural calcareous soils of Hamadan Province, western Iran. Archives of Agronomy and Soil Science. 54: 19-32.
41.Walkley, A., and Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science. 37: 29-38.
42.Wang, Y.J., Chen, J.H., Cui, Y.X., Wang, S.Q., and Zhou, D.M. 2009. Effect of low-molecular-weight organic acids on Cu (II) adsorption onto hydroxyapatite nanoparticles. Hazardous Materials. 162: 1135-1140.
43.Waterlot, C., Pruvot, C., Marot, F., and Douay, F. 2017. Impact of a phosphate amendment on the environmental availability and phytoavailability of Cd and Pb in moderately and highly carbonated kitchen garden soils. Pedosphere. 27: 588-605.
44.Wei, L., Wang, S., Zuo, Q., Liang, S., Shena, S., and Zhao, C. 2016. Nano-hydroxyapatite alleviates the detrimental effects of heavy metals on plant growth and soil microbes in e-waste-contaminated soil. Environmental Science: Processes & Impacts. 18: 760-767.
45.Wu, C., Yan, S., Zhang, H., and Luo, Y. 2015. Chemical forms of cadmium in a calcareous soil with different levels of phosphorus-containing acidifying agents. Soil Research. 53: 105-111. 46.Xian, X. 2003. Effect of chemical forms of Cadmium, Zinc and Lead in polluted soils on their uptake by cabbage plants. Plant and Soil. 113: 257-264.
47.Xu, Y., Schwartz, F.W., and Traina, S.J. 1994. Sorption of Zn2+ and Cd2+ on hydroxyapatite surfaces. Environmental Science Technology. 28: 1472-1480.
48.Zhang, Z.Z., Li, M.Y., Chen, W., Zhu, S.Z., Liu, N.N., and Zhu, L.Y. 2010. Immobilization of lead and cadmium from aqueous solution and contaminated sediment using nano-hydroxyapatite. Environmental Pollution. 158: 514-519. | ||
آمار تعداد مشاهده مقاله: 547 تعداد دریافت فایل اصل مقاله: 490 |