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This research presents a data-driven approach for forecasting daily
PM, 5 concentrations using a multilayer perceptron (MLP) neural
network across three urban monitoring sites in Mashhad, Iran—
Sajjad, Torogh, and Vila—each reflecting a unique land-use
profile. The study utilized daily datasets collected from 2018 to
2023, and a dedicated MLP model was trained for each station.
Various training algorithms were assessed to identify the most
suitable configuration, with model complexity fine-tuned by
adjusting the number of neurons in the hidden layer. Key input
features included meteorological variables from the preceding day
(such as wind speed, ambient temperature, precipitation, solar
radiation, and relative humidity), the previous day's PM,s
concentration, and calendar-based temporal factors. To improve the
network’s predictive capability and prevent overfitting, data
normalization and early stopping strategies were applied. The best
predictive performance was recorded at the Sajjad station, where
the model achieved an R? value of 0.79 and an MAE of 6.77 ug/m°.
While the Torogh station yielded moderate predictive accuracy, the
Vila station exhibited weaker performance. The models
demonstrated strong capability in identifying pollution episodes,
with true positive rates between 66% and 74%, and a minimum
false alarm rate of 0.18 at the Sajjad station. Spatial disparities in
model performance were attributed to localized environmental and
climatic factors, including terrain variation and emission source
intensity. Overall, the findings confirm the potential of MLP-based
models as practical tools for daily air quality prediction and support
their integration into urban pollution alert systems.
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Introduction

One of the critical factors affecting public
health is air quality, which is largely
influenced by the concentration of particulate
matter. Among these, fine particulate matter
with a diameter of less than 2.5 micrometers
(PM,5) has been widely recognized for its
direct association with adverse health effects
(Biswal et al., 2022). Elevated levels of PM,
have been linked to changes in lifestyle,
reduced life expectancy, and increased
mortality rates. Numerous studies have
demonstrated a statistically significant
correlation  between atmospheric PMjs
concentrations and negative health outcomes
(Yang et al., 2023). Consequently, various air
quality standards for PM,s have been
established based on hourly, daily, and
annual exposure limits. According to the
latest guidelines of the World Health
Organization, the recommended annual and
24-hour average limits for PM, s are 5 and 15
ng/me, respectively (WHO, 2021). In lIran,
based on the national air quality standard
approved in 2016, these thresholds are set at
12 and 35 pg/m?, respectively (DOE, 2016).

Meteorological factors such as wind speed
and direction, temperature, precipitation, and
planetary boundary layer height significantly
influence  the variability of PM,s
concentrations in the atmosphere. Severe air
pollution episodes typically occur in regions
where geographical features and atmospheric
stability inhibit natural ventilation, leading to
the accumulation of pollutants like PM;s
(Feng et al., 2019). These particles, primarily
emitted from combustion sources such as
urban traffic and industrial activities, remain
suspended in the atmosphere for extended
periods due to their ultrafine size and can
rapidly reach critical concentration levels.
Under such conditions, immediate
interventions—such as traffic restrictions,
school closures, or the suspension of
polluting activities—are often required.
Accordingly, both national and international
air pollution control regulations mandate the
implementation of automated operational
procedures to prevent pollutant
concentrations from exceeding predefined
alert thresholds (DOE, 2016; WHO, 2021).

Mashhad, one of Iran’s major and densely
populated metropolitan cities, exhibits both
urban and semi-industrial characteristics due
to its religious, touristic, and industrial
significance. A substantial portion of PM;s
emissions in Mashhad originates from mobile
sources, including aging wvehicles, diesel
buses, and motorcycles. While most urban
areas rely on natural gas for heating,
suburban districts still utilize liquid fuels,
especially in colder months, contributing to
localized PM,s increases. Additionally,
natural sources like windblown dust from
nearby deserts also elevate ambient PM,;
levels (Shahsavani et al., 2020).

Given the health impacts associated with
PM,s, this pollutant has become a major
public concern in the city of Mashhad.
Forecasting PM,s concentrations prior to
pollution episodes can facilitate more
effective interventions to protect public
health. A wide range of operational early
warning systems—based on statistical and
hybrid modeling approaches—have been
developed to enable proactive and real-time
responses to air pollution events. In this
context, predictive models have been
increasingly utilized as supportive tools for
air quality management in various regions
around the world.

Acrtificial neural networks (ANNSs) have been
widely applied to forecast the concentrations
of various pollutants over different time
scales, yielding promising results (Etemad-
Shahidi et al., 2010; Zoqi et al., 2016). In air
quality prediction studies, methods such as
ANNSs, multiple linear regression (MLR), and
stepwise regression (SWR) are among the
most commonly used approaches (Shams et
al., 2023). Due to the complex and nonlinear
relationships between meteorological
parameters and pollution levels, ANNs have
demonstrated superior performance compared
to traditional statistical models (Cakir and
Sita, 2020). Since their initial application in
modeling atmospheric pollutant
concentrations (Boznar et al., 1993), ANNs
have been regarded as a reliable method in
this field.

Although forecasting particulate matter
concentrations is more complex than
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modeling gaseous pollutants—due to the
intricate processes involved in aerosol
formation, transport, and removal (Sokhi et
al., 2021) —mneural networks have
demonstrated high accuracy owing to their
ability to identify and model nonlinear
relationships (Su et al., 2025). Feedforward
neural networks with error backpropagation
(FFNNSs) are among the most commonly used
neural network architectures for predicting
pollutants such as PM,s, PMyy, O3, SO,, and
CO, due to their capacity to model complex
nonlinear interactions (Elbayoumi et al.,
2015). In one study, several machine learning
methods were wused to predict PM,s
exceedance events, and FFNNs exhibited
superior performance (Suri et al., 2023). In
other studies, various machine learning
approaches—including  FFNNs,  pruned
neural networks (PNNs), and lazy learning
(LL) techniques—have been applied for
PM, 5 concentration prediction, with FFNNs
consistently outperforming the alternatives
(Yang and Chen, 2021). Another study
analyzed multiple methods for forecasting
daily average PM,s concentrations. The
results of two types of multilayer perceptron
(MLP) networks—an important subclass of
FFNNs—and a radial basis function (RBF)
network were compared with two classical
models, and the MLP model demonstrated
superior predictive performance (Ganesh et
al., 2018).

In the present study, a model was developed
to predict daily PM, s concentrations based on
air pollution data collected from three
monitoring  stations—Sajjad, Vila, and
Torogh—in the city of Mashhad. These
stations represent diverse urban conditions:
the Sajjad station is located in a densely
populated, high-traffic area; the Vila station
is situated in a region with moderate
population density; and the Torogh station is
positioned on the southeastern outskirts of the
city, where air quality is influenced by
industrial activities and heavy-duty vehicle
traffic.

An MLP neural network was employed to
predict  the daily average  PM,;
concentrations at the selected monitoring
stations. Model inputs included the previous
day's average PM,s concentration as well as
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the previous day's meteorological parameters,
such as mean wind speed and direction,
precipitation, solar radiation, temperature,
and relative humidity. Additionally, to
account for variations in traffic patterns
across different days of the week and
throughout the year—due to Mashhad’s
religious and touristic nature—variables such
as the day of the week (1 to 7) and the month
of the year (1 to 12) were incorporated into
the model as input features. The primary
objective of this study is to protect at-risk
populations by providing accurate and timely
information on air quality.

Materials and Methods

Study Area

This study was conducted in the metropolitan
city of Mashhad, located in northeastern Iran.
With a population exceeding 3.5 million,
Mashhad is the second most populous city in
the country after Tehran. Due to its religious
and touristic significance, the city attracts
over 20 million domestic and international
pilgrims and tourists annually. These
characteristics have led to high urban traffic
density, increased fossil fuel consumption,
and the expansion of commercial and service
activities—major sources of PM, s emissions.

Topographically, Mashhad is situated on a
plain at an average elevation of
approximately 980 m above sea level. It is
surrounded by the Hezar-Masjed Mountains
to the north (with elevations exceeding 2800
m) and the Binalood Range to the southwest
(reaching approximately 3211 m). This
complex terrain gives rise to specific climatic
phenomena such as mountain-to-plain
breezes, nocturnal temperature inversions
during cold nights, and convective airflows in
warmer seasons. These conditions can
contribute to elevated pollutant
concentrations or the persistence of pollutants
near the surface, particularly during winter
when thermal inversion events are more
intense.

The average annual temperature in Mashhad
is approximately 12.4°C, and the mean
annual precipitation is reported to be around
248.6 mm. The prevailing winds in this
region typically blow from the west and
northwest, with an average speed of about
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3 m/s (Daneshvar et al., 2025). On average,
approximately 86 days per year in Mashhad
are classified as having unhealthy air quality
for sensitive groups—including children, the
elderly, and individuals with respiratory
illnesses. This condition is primarily
attributed to combustion-related sources such
as heavy traffic congestion, domestic heating,
industrial activities, and regional climatic
factors (Mohammadi et al., 2022).

In this study, data from three air quality
monitoring stations were used, each located
in areas with distinct environmental
characteristics and pollution sources. The
Sajjad station was selected to represent urban
background pollution associated with PM,.
This station is situated in the city center at an
elevation of approximately 1000 m above sea
level, near Falasteen Square, and within less
than 100 m of major roads such as Sajjad and
Ahmadabad Boulevards. This area is among
the busiest traffic zones in Mashhad and is
significantly influenced by emissions from
both light and heavy vehicles.

The Torogh station, located in the
southeastern part of Mashhad at an elevation
of approximately 1020 m above sea level, lies
about 15 km from the city center and near the
Torogh Industrial Zone. This station reflects
the combined impact of pollution from high
diesel vehicle traffic, industrial activities, and
emissions from heavy-duty transportation
sources.

The Vila station is situated in a mixed
residential-commercial area with moderate
traffic density in the southwestern part of the
city, at an elevation of approximately 970 m.
It is located about 5 km from the city center
and is relatively distant from direct sources of
industrial emissions. Therefore, this station is
considered representative of areas with lower
background pollution levels.

Design and Training of MLP Neural
Networks

In this study, three MLP neural networks
were developed to predict the daily average
concentration of PM,s at three air quality
monitoring stations in Mashhad: Sajjad,
Torogh, and Vila. Each network was
independently designed and trained for a

specific station—ANN1 for Sajjad, ANN2
for Torogh, and ANNS for Vila.

The initial dataset comprised several years of
hourly  pollutant  concentrations  and
meteorological parameters. These data were
preprocessed using the Python programming
language, with the aid of the pandas library
for structured data manipulation and NumPy
for  numerical computations.  During
preprocessing, the data were time-indexed by
date and aggregated into daily values (24-
hour averages) to enable the prediction of
next-day PM,s concentrations. In instances
where one or more input variables were
missing for a given day, the corresponding
row was removed from the dataset to avoid
errors associated with imputation of missing
values. Ultimately, approximately 70-80% of
the daily data for each station remained
complete and was deemed suitable for model
development.

The general architecture of each network
consisted of three main layers: an input layer,
a hidden layer, and an output layer. The input
layer incorporated the modeling variables,
including meteorological and air quality
parameters. The hidden layer comprised
several neurons that computed the weighted
sum of the inputs and passed the results
through a nonlinear tangent sigmoid
activation function. The final output was
produced in the output layer by combining
the weighted outputs of the hidden layer
neurons using a linear activation function.

The use of the tangent sigmoid function in
the hidden layer enables the network to
capture nonlinear mappings and model
complex relationships, while the linear
activation function in the output layer ensures
the generation of continuous outputs without
additional nonlinear transformation. This
combination of activation functions provides
an efficient framework for various prediction
problems (Zoqi et al., 2010).

To identify the most appropriate training
algorithm for each station, initial neural
networks with 10 neurons in the hidden layer
were designed and trained using several
algorithms. The performance of each
algorithm was evaluated on the training,
validation, and testing datasets using
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algorithm  vyielding the best overall
performance was selected for further
modeling.

Once the optimal training algorithm was
identified, the process of determining the
optimal number of neurons in the hidden
layer for each network began. Networks were
initially trained with 10 neurons, and the
number of neurons was then gradually

increased to assess different network
configurations. For each configuration,
statistical performance indicators were

recorded and analyzed for the training,
validation, and testing sets. This process
continued until the most efficient network
structure—based on performance metrics—
was identified for each monitoring station.

To prevent overfitting, network structures
that exhibited decreased training error but
increased validation or testing error were
excluded. Network training was performed
using the backpropagation algorithm, aiming
to minimize the discrepancy between
predicted and actual outputs. This process
involved a forward pass for signal
propagation and a backward pass for
updating the connection weights through
error backpropagation.

The modeling process was conducted using
MATLAB software. To mitigate overfitting,
the dataset was split into 70% for training,
15% for validation, and 15% for testing. The
early stopping method was employed to
further reduce the risk of overfitting.
Additionally, to enhance the stability and
reliability of the results, each network was
independently trained three times.

Data Preparation

For each of the three monitoring stations in
Mashhad (Sajjad, Vila, and Torogh), separate
daily datasets were compiled for the period
from 2018 to 2023. These datasets included
both meteorological parameters and PM,;
concentration levels. Meteorological data—
comprising air temperature (°C), relative
humidity (%), average wind speed (m/s),
wind direction (degrees), and precipitation
(mm)—were obtained from the Khorasan
Razavi Meteorological Organization.
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PM, s concentration data were acquired from
the Khorasan Razavi Department of
Environment. These data were continuously
recorded on an hourly basis using online beta
attenuation monitoring instruments. In this
method, an airstream passes over a filter, and
the decrease in beta radiation intensity—due
to the accumulation of particulate matter—is
used to calculate the mass concentration of
PM,s. Although beta attenuation monitors are
recognized as semi-reference  methods
(Shukla and Aggarwal, 2022), to enhance
measurement accuracy, the recorded data
were corrected using adjustment coefficients
derived from comparisons with gravimetric
reference methods when necessary. These
correction coefficients were calculated
separately for each station and on a seasonal
basis and were applied only when the
correlation coefficient between beta and
gravimetric data exceeded 0.8. Data coverage
over the study period (2018-2023) was
approximately 80% for each station. To
maintain analytical integrity, no extrapolation
or interpolation was performed to replace
missing data. In cases where input variables
were missing for a particular day, the
corresponding daily record was entirely
excluded from the modeling dataset to ensure
consistency and reliability during training and
validation phases.

The annual average PM,s concentration
during the study period ranged from 35 to 38
ug/m? at the Sajjad station, 26 to 32 ug/m?® at
the Torogh station, and 20 to 28 pug/m? at the
Vila station. These variations reflect the
relative intensity of local emission sources,
including traffic, industrial activity, and
domestic heating, in different parts of the
city.

To provide an overview of the statistical
characteristics of the dataset used in this
study, descriptive indicators—including
minimum, maximum, mean, and standard
deviation—were calculated for the main
parameters (PM, s concentration, temperature,
humidity, wind speed, and precipitation). The
results of this statistical analysis are
presented in Table 1. These indicators help
identify data variability and offer insights
into the distribution of variables over the
study period.
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These values indicate considerable variability
in  both pollutant concentrations and
meteorological conditions, which is crucial
for understanding the dynamics of PM;s

behavior and its interaction  with
environmental parameters in the urban
context of Mashhad.

Table 1. Descriptive statistics of meteorological variables and PM, 5 concentrations over the six-year

period (2018-2023)

Variable Range
PM, 5 concentration at Sajjad Station (pg/m®) 112.08
PM, 5 concentration at Torogh Station (ug/m?) 151.23
PM, 5 concentration at Vila Station (pg/m®) 140.00
Average precipitation (mm) 49.80
Maximum temperature (°C) 52.90
Average temperature (°C) 48.70
Maximum wind speed (m/s) 18.00
Average wind speed (m/s) 9.00

Average relative humidity (%) 88.25

As shown in Table 1, the variables under
investigation exhibit different scales and
ranges. For example, PM, 5 concentrations at
the Sajjad station range from 1.01 to 113.09
ng/m®, while the average wind speed varies
from 0.25 to 9.25 m/s. These wide disparities
in variable ranges highlight the necessity of
standardization. Without it, variables with
larger numerical ranges—such as PM,s—
may lead to unbalanced learning, reduced
convergence speed during model training,
and numerical instability (Zogi and Saeedi,
2011).

To address this issue, this study employed a
standardization approach in which the input
data were transformed to have a mean of zero
and a standard deviation of one (Equation 1).
This process promotes a more stable and
uniform gradient flow, reduces numerical
instabilities caused by large input values, and
accelerates convergence in gradient-based
optimization algorithms. It also enhances the
effectiveness  of  activation  functions.
Additionally, centering the features around
the mean and bringing them onto a
comparable scale improves model
interpretability and contributes to more
efficient learning and better generalization to
unseen data (Zoqi, 2024).

Furthermore, to incorporate temporal
categorical features such as the day of the
week and the month of the year, one-hot
encoding was applied. In this method, each
category (i.e., each weekday or month) is
represented as a distinct binary vector,

Minimum | Maximum | Mean | Standard Deviation
1.01 113.09 | 36.54 18.81
3.62 154.85 | 29.97 26.43
1.12 14112 | 22.30 23.03
0.00 49.80 0.56 2.55
-9.70 43.20 23.35 10.29
-14.50 34.20 16.81 9.18
2.00 20.00 6.99 2.59
0.25 9.25 3.04 1.07
11.75 100.00 | 49.04 21.68

thereby preventing the erroneous imposition
of ordinal or numerical relationships between
categories. The use of one-hot encoding
eliminates numerical bias and enables the
model to capture temporal patterns more
accurately,  ultimately  improving its
predictive performance.

X—u
o

X

scaled =

)

where X,...q 1S the standardized value, X is
the original value, p is the mean of the
values, and o is the standard deviation.

Input Variables

The selection of variables examined in this
study was based on a review of relevant
literature and the availability of existing data.
To assess the appropriateness of the selected
variables and evaluate the relationships
among them, Pearson correlation analysis
was employed. This method is a fundamental
and widely used technique in statistical
analysis and data mining for measuring the
strength and direction of the linear
relationship  between two  continuous
variables (Zoqi, 2024). The correlation
coefficient, calculated according to Equation
(2), quantifies the linear dependence between
each pair of variables within the range of [-1,
+1], where +1 indicates a strong positive
relationship, —1 signifies a strong negative
relationship, and O denotes the absence of a
significant linear association. The aim of this
process was to identify the most influential
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variables affecting the dependent variable and
to eliminate irrelevant or redundant features.

- X - —T) @)

XY — — —
VI =X)L, - 1)?

In Equation (2), X and Y represent a pair of

variables, while X and Y denote the mean
values of these variables, respectively.

In this study, a Pearson correlation matrix
was constructed—a symmetric structure in
which each cell represents the correlation
coefficient between a pair of variables.
Analyzing this matrix enables the
identification of highly correlated variables—
those with an absolute correlation coefficient
greater than 0.8. Such high correlations
indicate multicollinearity and redundancy of
information; in these cases, the associated
variables are excluded to prevent adverse
effects on model stability and accuracy.
Additionally, variables showing a weak
correlation with the output variable (absolute
value less than 0.1) are removed, as they have
minimal explanatory power for the dependent
variable and do not significantly contribute to
model performance (Cheng et al., 2022). A
careful application of Pearson correlation
analysis enhances the precision of variable
selection, improves model generalizability,
and reduces unnecessary complexity.

Results and Discussion
Correlation  Analysis  between
Variables and PM, 5 Concentration
Prior to designing the neural network model,
the Pearson correlation matrix was calculated
to assess the relationships between PM;s
concentration and other measured parameters
at each station. As shown in Figure 1, some
variables exhibit significant correlations with
PM,s concentrations, while others show
negligible influence on this pollutant. Among
the examined parameters, relative humidity
demonstrated a moderately strong negative
correlation with PM, s (correlation
coefficients ranging from -0.38 to -0.45
across different stations), indicating a
decrease in particle concentration with
increasing humidity. This inverse relationship
can be attributed to enhanced wet deposition
and reduced atmospheric residence time of
particles (Emekwuru and Ejohwomu, 2023).

Input
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Air temperature showed a moderate positive
correlation with PM, 5 (correlation
coefficients between 0.30 and 0.36 across
stations), which may result from atmospheric
stability during warmer periods of the day,
reduced humidity, and limited dispersion of
pollutants. Moreover, a negative correlation
was observed between temperature and
relative humidity, as rising temperatures
increase the air’s capacity to hold water
vapor, thereby reducing relative humidity
(Emekwuru and Ejohwomu, 2023). Under
such conditions, higher temperatures not only
elevate anthropogenic activity and pollutant
emissions but also reduce the effectiveness of
natural removal processes such as wet
deposition, while facilitating the resuspension
of particulate matter. Additionally, local
atmospheric stability in the lower boundary
layer can further inhibit pollutant dispersion
(Nyayapathi et al., 2025). Overall, hot and
dry conditions promote increased generation,
resuspension, and persistence of PM,s,
ultimately leading to elevated concentrations.
Conversely, during winter, the dominant
meteorological conditions—such as high
relative humidity, stratiform cloud cover, and
light precipitation—contribute to lower
temperatures and enhanced wet deposition,
thereby reducing PM,s levels (Emekwuru
and Ejohwomu, 2023).

However, the influence of temperature on
PM,s concentration extends beyond
variations in relative humidity or atmospheric
instability. One of the key factors in this
context is the inversion layer height, which is
directly affected by the thermal structure of
the atmosphere (Liu et al., 2022). Climatic
assessments of Mashhad indicate that the
base height of temperature inversion layers
varies between 500 and 1000 m from June to
September, and between 100 and 500 m from
October to May. Notably, in March, the mean
minimum  inversion  height  reaches
approximately 120 m (Mansouri Daneshvar
et al., 2024). This period coincides with the
highest frequency of critical air pollution
episodes, as strong, low-altitude inversions
trap pollutants within the lower atmospheric
layers, leading to significant increases in their
concentrations. Therefore, temperature plays
a more complex role in regulating PM;s
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levels by influencing atmospheric
stratification and stability, which cannot be
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Figure 1. Spearman correlation matrix between pollutant and meteorological variables at stations: (a)

Sajjad, (b) Torogh, and (c) Vila

The analysis of the Pearson correlation
matrix revealed a weak negative correlation
between precipitation and PM, 5
concentration across the monitored stations,
with coefficients ranging from -0.12 to -0.18.
Although this correlation is statistically weak,
its influence should not be entirely
disregarded. Precipitation contributes to the
temporary reduction of airborne particulate
matter through the wet deposition process,
which removes particles from the atmosphere
and transports them to the ground. In the
semi-arid climate of Mashhad, where the
average annual precipitation is reported to be
approximately 220-260 mm (Daneshvar et
al., 2025), not only is the number of rainy
days limited, but the intensity and persistence
of rainfall are also generally insufficient to
cause a significant and sustained reduction in
particle concentrations (Jaafari et al,
2018).Therefore, on short-term timescales

(daily or weekly), precipitation cannot be
considered a major determinant in explaining
PM, 5 concentration variability, and its impact
is mainly confined to intense or exceptional
rainfall events. These findings are consistent
with  previous studies, which have
demonstrated that the effect of precipitation
in arid and semi-arid regions is significantly
weaker than in humid climates due to lower
rainfall frequency and intensity (Marzouni et
al., 2016).

Based on the correlation matrix results, the
mean wind speed showed a moderate
negative correlation with PM, 5
concentration, with correlation coefficients
ranging from -0.28 to -0.36 across different
stations. This suggests that higher wind
speeds are generally associated with lower
PM, 5 concentrations. Wind plays an essential
role in ventilating polluted air through
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processes such as dilution, horizontal and
vertical dispersion, and the transport of
pollutants across the lower atmospheric
layers, particularly under conditions with
strong regional airflow. However, in this
study, the most frequent mean wind speed
was observed in the range of 2.0 to 3.88 m/s,
indicating that for most days of the year,
Mashhad experiences relatively low wind
speeds, and strong wind events are rare.
Consequently, the moderate level of observed
correlation can be attributed to these typically
low wind speeds. If stronger winds were
more common, the impact of wind on
reducing PM,s concentrations would likely
be more pronounced.

The analysis revealed that although westerly
winds are predominant in the region, their
low speeds, along with local obstructions
such as terrain irregularities and dense urban
structures, significantly limit their effect on
the dispersion of PM, 5 particles. As a result,
wind direction showed no statistically
significant correlation with PM, 5
concentrations.  Therefore, to  avoid
incorporating low-impact variables, reduce
statistical noise, and enhance model accuracy,
wind direction was excluded from the ANN
input parameters.

Although solar radiation can contribute to the
formation of secondary PM,s through
photochemical reactions under certain
conditions, in Mashhad’s dry and semi-
industrial climate, PM,s concentrations are
predominantly  influenced by primary
sources, including vehicular traffic and wind-
induced resuspension of surface dust.
Moreover, due to the strong correlation
between solar radiation and air temperature,
and the absence of a meaningful relationship
between solar radiation and the model output,
this variable was also excluded from the
model inputs to reduce multicollinearity and
simplify the model structure.

The analysis of temporal variables revealed a
weak but positive correlation between PM;s
concentrations and both the day of the week
and month of the year. Spearman’s rank
correlation coefficients for the relationship
between day of the week and PM,s ranged
from 0.18 to 0.25, and for month of the year,
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from 0.21 to 0.28 across the three studied
stations. Although these correlations are
statistically weak, they reflect the influence
of temporal patterns in human activity, such
as traffic volume and commercial operations,

on particulate matter distribution.
Additionally, time-related variables may
indirectly affect pollutant behavior by

influencing meteorological conditions like
temperature and atmospheric stability (Zhao
etal., 2018).

Further examination of individual stations
showed that this correlation was strongest at
the Sajjad station, compared to the Villa and
Torogh stations. This variation is primarily
attributed to differences in the type and
intensity of human activities surrounding
each monitoring site. The Sajjad district, as a
major administrative-commercial hub in
Mashhad, frequently experiences non-local
traffic flows. Traffic patterns in this area
fluctuate significantly during weekends,
public holidays, and religious or social
events, which in turn influence pollutant
concentrations. These temporal fluctuations
lead to greater sensitivity of PM, s levels to
time-related variables at the Sajjad station.

In contrast, the Villa station is more
influenced by local activities and relatively
stable traffic conditions, while the Torogh
station is situated near industrial zones and
heavy transportation corridors, which are less
affected by temporal variations such as
holidays or special events. Consequently,
temporal variability in air pollution patterns
is less pronounced at these two stations
compared to Sajjad.

These findings are consistent with previous
studies in other metropolitan areas, which
have shown that administrative-commercial
zones and urban attraction centers are more
susceptible to fluctuations in  PMjs
concentrations due to unstable traffic
volumes (Zhao et al., 2018).

Neural Network Structure

To identify the optimal training algorithm for
neural network modeling, an MLP was
independently designed for each station using
a fixed architecture comprising a single
hidden layer with 10 neurons. The hyperbolic
tangent sigmoid function was applied as the
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activation function in the hidden layer, while
a linear activation function was used in the
output layer. Five commonly used training
algorithms  available in MATLAB—
Levenberg—Marquardt  (LM),  Bayesian
Regularization (BR), Scaled Conjugate
Gradient (SCG), Resilient Backpropagation
(RP), and Gradient Descent (GD)—were
evaluated. Among these, the LM algorithm
consistently outperformed the others across
all three stations and was consequently
selected as the optimal training algorithm.
This algorithm was employed in subsequent
stages to refine the network architecture and
enhance prediction accuracy.

In this study, an independent neural network
was developed for each monitoring station.
The selected LM algorithm was used to train
an MLP with a single hidden layer of variable
size. Starting from 10 neurons, the number of
neurons in the hidden layer was gradually
increased to assess changes in the model's
performance  metrics, including  the
coefficient of determination (R? and root
mean square error (RMSE), across the
training, testing, and validation datasets. The
performance results for  near-optimal
configurations are summarized in Table 2.

Table 2. Optimization of the hidden layer neuron count for the three monitoring stations

Station Neuron Count R? (Train)
15 0.802
Sajjad 16 (Optimal) 0.813
17 0.817
10 0.786
Torogh 11 (Optimal) 0.800
12 0.808
18 0.706
Vila 19 (Optimal) 0.721
20 0.729

The results presented in Table 2 indicate that
increasing the number of neurons in the
hidden layer consistently enhances model
accuracy on the training dataset. However,
this trend does not uniformly extend to the
test and validation datasets. For instance, at
the Sajjad station, increasing the number of
neurons from 15 to 16 improved the
correlation coefficient (R?) on the test data
from 0.784 to 0.793, while the RMSE
decreased from 7.12 to 6.77 pg/m’.
Nevertheless, further increasing the neuron
count to 17 vyielded only a marginal
improvement in training performance,
accompanied by a decline in test set
accuracy, indicating the onset of overfitting.
This behavior was also observed at the
Torogh and Villa stations, suggesting a
consistent pattern regarding the impact of
increasing network complexity. These results
underscore the importance of avoiding
unnecessary increases in model parameters,
which may elevate the risk of overfitting.

RMSE (Train) R? (Test) RMSE (Test)
6.12 0.784 7.12
5.88 0.793 6.77
5.71 0.786 6.93
6.91 0.769 7.89
6.76 0.780 7.65
6.59 0.774 7.82
8.81 0.635 9.81
8.66 0.647 9.56
8.53 0.639 9.73

It is worth noting that, during the model
training process, the early stopping technique
was employed to prevent overfitting. In this
study, early stopping was implemented by
halting training when the validation error
failed to improve over six consecutive
epochs. This approach effectively mitigates
the risk of the model becoming overly fitted
to the training data. However, despite the use
of early stopping, an excessive increase in the
number of neurons in the hidden layer can
still lead to overfitting due to the model’s
elevated capacity (Zogi and Ghavidel, 2009).
In such cases, the network becomes
excessively complex, and its generalization
ability diminishes. As a result, instead of
learning generalizable patterns, the model
begins to memorize specific fluctuations in
the training dataset, leading to reduced
performance on the test and validation sets.

Based on the results presented in Table 2, the
optimal neural network architectures for each
monitoring station were identified as follows:
ANNL for the Sajjad station with 16 neurons,
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ANN2 for the Torogh station with 11
neurons, and ANNS3 for the Vila station with
19 neurons in a single hidden layer. All
models utilized the hyperbolic tangent
sigmoid activation function in the hidden
layer and a linear activation function in the
output layer.

The variation in the optimal number of
neurons across the stations can be attributed
to the distinct statistical characteristics of
each dataset. Factors such as data variance
and coefficient of variation, the presence of
nonlinear patterns of varying complexity, and
the signal-to-noise ratio at each station
significantly influence the model capacity
required for effective learning. Specifically,
stations like Vila, which exhibit more severe
fluctuations or more complex temporal
patterns in PM,s concentrations, require a
larger number of neurons in the hidden layer
to adequately capture the intrinsic structure of
the data. This finding underscores that the
optimal neural network architecture cannot be
uniform or universally applied across all
datasets; rather, it must be individually
determined based on the statistical properties
and inherent complexity of the data at each
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between bias and variance is particularly
important. Increasing the number of neurons
enhances model capacity, which may reduce
bias but increase variance, potentially leading
to overfitting. Conversely, too few neurons
may result in high bias and underfitting.
Therefore, determining the optimal number
of neurons should strike a balance between
these two factors, ensuring that the model
maintains sufficient generalization capability
while accurately capturing complex data
patterns (Geman et al., 1992).

Neural Network Performance

The performance of the neural network at the
three air quality monitoring stations in
Mashhad—Sajjad, Torogh, and Vila—is
illustrated in Figure 2. This figure presents
the statistical performance indicators for the
training, validation, and testing phases. Based
on these results, the model exhibited strong
learning capability during the training phase
and maintained satisfactory performance in
both the validation and testing stages. These
findings demonstrate the model’s adequate
generalization ability in predicting PMjs
concentrations for unseen data.

location. In this context, the trade-off
25
< RMSE MAE MAPE (%)
IS 20
[&]
2
£ 15
E
= 10
b=
iz 5
G
S 0
© o = 2] o] = o] e} = o]
> < o = < [ a [
© 5 2 > 5 8 > | g g2 >
= n = n n
(= [ [ [
Training Validation Testing

Station name and model stage

Figure 2. Comparison of MLP model performance indicators during the training, validation, and testing

phases at the three monitoring stations

The Sajjad station, located in one of the most
traffic-congested urban areas of Mashhad,
demonstrated the  highest  predictive
performance. This outcome can be attributed
to the relatively stable pattern of traffic-
related pollution, spatial and temporal
consistency in pollutant dispersion, and the

absence of diverse or complex emission
sources. The model's statistical performance
during the testing phase at this station
included an R® of 0.79, an RMSE of 6.77
Hg/m®, a Mean Absolute Error (MAE) of 5.54
pg/m®, and a Mean Absolute Percentage
Error (MAPE) of approximately 10.73%,
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indicating good agreement between observed
and predicted concentrations.

At the Torogh station, despite its peripheral
location, high pollution levels were
recorded—primarily due to industrial
activities, the movement of heavy-duty diesel
vehicles, soil erosion, and transboundary
pollutant transport from neighboring regions.
In this case, the model achieved a testing-
phase R? of 0.78, an RMSE of 7.65 ug/m?, an
MAE of 594 pg/m®, and a MAPE of
approximately  12.09%.  Although the
predictive accuracy at Torogh was slightly
lower than at Sajjad, the model's performance
remains within an acceptable range (Gulati et
al., 2023).

The Vila station, located in a moderately
urbanized area near the Binalood mountain
range, exhibited the weakest performance in
predicting daily PM,s concentrations.
Nevertheless, even at this station, the model
demonstrated an acceptable ability to capture
the general data patterns. During the testing
phase, the statistical indicators included an R
of 0.65, an RMSE of 9.56 pg/m®, an MAE of
7.24 pg/m®, and a MAPE of approximately
18.49%.

The reduced accuracy at this station can be
attributed to the high spatiotemporal
variability of multiple pollution sources—
such as dispersed residential, commercial,
and traffic-related activities—which, unlike
the Sajjad and Torogh stations, lack spatial
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and temporal coherence. Furthermore, the
station’s  geographical  location  near
mountainous terrain influences the formation
of meteorological phenomena such as
temperature inversions, regional airflows, and
specific wind patterns. These factors lead to
reduced atmospheric stability and nonlinear
pollutant transport, thereby complicating
accurate prediction. The interplay of these
conditions has diminished the model's
capacity to precisely simulate pollutant
concentration behavior in this area.

Figure 3 illustrates the regression results
between observed and predicted PM,;
concentrations during the different phases of
the modeling process. As shown, a strong
correlation between actual and predicted
values is evident at all three monitoring
stations.

Based on the results presented in Figures 2
and 3, the neural network model
demonstrated higher accuracy in areas with
more consistent pollution patterns, such as
the Sajjad station, while its performance
declined in regions characterized by diverse
pollution sources or distinct climatic
conditions. For further validation, the
findings of this study were compared with
those of previous research, as summarized in
Table 3, which corroborates the accuracy and
effectiveness of the modeling approach
employed in the present study.
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Figure 3. Regression plots comparing the actual and predicted daily PM, s concentrations using the MLP
neural network model at the three monitoring stations: Sajjad Station — (a) training data, (b) validation
data, (c) testing data; Torogh Station — (d) training data, (e) validation data, (f) testing data; Vila Station —
(9) training data, (h) validation data, and (i) testing data
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Table 3. Comparison of PM, 5 prediction model performance across different studies

Study Location
Mashhad, Iran MLP

Modeling Method

Qingdao, China Long Short-Term Memory (LSTM)

Convolutional Neural Network (CNN) and

Geographically Weighted Gradient Boosting

R? RMSE (ug/m°)
0.65-0.79  6.77-956

Reference

Present study

083,085 8351436 | (Baietal, 2024)

China Machine (GW-GBM) 0.71-0.76 | 25.02-25.31 | (Zhanetal., 2017)
Beijing, China gﬁigfj@ecg‘r’\gggszzsig\r']ezgr\‘/bs)rf (SN 051-076 19582854 (Wuetal, 2022)
Rio e Janelro, | it winters (HW) and ANN - 5.81—14.93 (Vené‘érlag‘;t al.
Ahvaz, Iran  MLP 0.74 46.44 (Gougg;zli)“ al.,
Tehran, Iran égtefgg‘éﬁlfé:ftnj'm tl\(lglgraCINl’:lI?(tsVI;OLrll; with - 78 6.44 (Faraj et al., 2022)
Shanghai, China fﬂ’:(’:\r'ﬂn‘;"(”(‘:?\ilrl‘\f_dGB‘ﬂt)h Gradient Boosting g5 1002 (Luo et al., 2020)
Shanghai, China \(’\\,’\fmﬁ‘; Artificial - Neural - Network | g7 10.66 (Guo et al., 2023)
Kolkata, India | Multiple Linear Regression (MLR) and ANN | 0.51, 0.69 8.55, 12.58 (Beraetal., 2021)
Isfahan, Iran | ANN, SVM, and KNN 0'981802'85' 5.44,7.24, 8,51 (MOhag‘g;fl‘;i etal,
Thailan Spatio-temporal Deep Learning Model 0.77 7.63 (Sirisu;g)glér)] etal,
Model  Performance  Evaluation in exceedances (both true and false); M, the

Predicting Daily PM, s Exceedances

To assess the performance of a prediction
system, various evaluation metrics can be
employed. One of the most critical indicators
is the system’s ability to accurately predict
exceedances of the daily air quality standard.
According to the Iranian National Ambient
Air Quality Standard, the permissible daily
limit for PM,s is set at 35 pg/m® (DOE,
2016).

To analyze the model’s effectiveness in
forecasting exceedance events, three key
statistical indicators were used: True Positive
Rate (TPR), False Alarm Rate (FAR), and
F1-score. These metrics were calculated by
comparing the predicted wvalues against
observed data for instances where daily PM; 5
concentrations exceeded the threshold of 35
ug/me,

The parameters used to compute these
performance indicators include: A, the
number of correctly predicted exceedance
events; F, the total number of predicted

total number of actual exceedance events;
and N, the total number of days analyzed
(i.e., total data points). In this context, the
ratio of true positive predictions to all
predicted exceedances (A/F) represents the
precision of the model in identifying
exceedance cases.

The TPR, as defined in Equation (3), reflects
the model’s ability to correctly identify days
with actual exceedances and is considered a
measure of the model’s sensitivity.

A
TPR = — 3
7 @)
The FAR, as defined in Equation (4),
indicates the proportion of predicted
exceedance events that did not actually
exceed the threshold.

FAR = — (4)

The Fl-score (Equation 5) represents the
harmonic mean of precision and sensitivity
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(TPR). This metric is particularly useful in
imbalanced classification problems, where
the number of exceedance and non-
exceedance cases are unevenly distributed.
The Fl-score effectively balances the
model’s  ability to correctly detect
exceedances while minimizing false alarms.
A value closer to 1 indicates superior model
performance. In environmental applications,
Fl-scores greater than 0.70 are typically
considered acceptable.

2 - Precision - TPR
Precision + TPR

F1-Score = (5)
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Table 4 presents the performance metrics of
the ANN model in predicting exceedance
events of the daily PM, .5 threshold (35
ng/md) at three air quality monitoring stations
in Mashhad during the period 2018-2023.
The results indicate notable spatial
differences in model performance.
Specifically, the ANN model demonstrated
superior predictive accuracy at the Sajjad
station, while a marked decline in
performance was observed at the Vila station.

Table 4. Performance metrics of the ANN model for predicting daily PM, .5 exceedance events (>35

pg/m?) at air quality monitoring stations in Mashhad
N (Total M (Observed

F (Predicted

A (True

S Days) Exceedances) Exceedances) Positives) LIS FAR | (LS
Sajjad 1571 463 421 343 0.74 0.18 0.78
Torogh 1210 225 198 159 0.71 0.19 0.75
Villa 1443 323 295 211 0.66 0.28 0.68
At the Sajjad monitoring station, the model's ~ score of 0.62 was observed in Jakarta

performance indicators demonstrate
considerable success in identifying pollution
events characterized by daily PM; .5

concentrations exceeding the regulatory
threshold. A TPR of 0.74 indicates that 74%
of actual exceedance events were correctly
identified. Moreover, a FAR of 0.18 reflects
the model's ability to minimize false positive
predictions. The F1-score, a composite metric
balancing precision and recall, was calculated
as 0.78, indicating a favorable balance
between sensitivity and precision in detecting
critical pollution events. The model’s
superior performance at the Sajjad station can
be attributed to the relatively lower density of
unpredictable pollution sources—such as
construction activities and episodic public
events—which often reduce forecasting
accuracy.  Additionally,  the  relative
consistency of pollution patterns in this area
likely enhances the model’s generalizability.

The ANN model’s performance in predicting
PM, .5 exceedance events aligns well with
findings from similar studies conducted in
regions characterized by stable pollution
patterns. For instance, F1-scores ranging
from 0.77 to 0.88 have been reported in
Isfahan (Mohammadi et al., 2024); an F1-

(Marsha and Larkin, 2019); and TPR values
between 60% and 75% were documented in
the western United States (Moustris et al.,
2010). Furthermore, in Athens, the TPR and
FAR were reported as approximately 0.78
and 17.9%, respectively (Toharudin et al.,
2023).

The Torogh monitoring station, located on
the southeastern outskirts of Mashhad and
adjacent to industrial zones, exhibited
relatively stable performance comparable to
that of the Sajjad station. The Fl-score and
FAR at this station were calculated as 0.75
and 0.19, respectively, indicating acceptable
accuracy in predicting pollution events and a
low rate of false alarms. The presence of
relatively  consistent pollution patterns
stemming from industrial activities, along
with the spatial distance from the city
center—which reduces the diversity of
pollution  sources—are  key  factors
contributing to reduced data noise and
improved model performance. The findings
of this study are consistent with results
reported in other industrial regions. For
instance, ANN models achieved F1-scores of
approximately 0.76 in the Shah Alam
Industrial Area, Malaysia (Arafin et al,
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2024), and Fl-scores ranging from 0.74 to
0.80 in the Puli Industrial Zone in Taiwan
(Yinetal., 2021).

In contrast, at the Vila station, the F1-score
dropped to 0.68, indicating a decline in model
performance. This station is situated in the
southwestern part of Mashhad, in an area
characterized by specific topographic
features, including proximity to southern
highlands and urban green spaces. Such
conditions cause significant variability in
wind flow and pollution dispersion patterns.
Furthermore, temperature inversion
phenomena—especially during early morning
hours or colder seasons—can lead to the
accumulation of pollutants in the lower
atmospheric  layers, complicating their
dispersion patterns. These dynamics are often
overlooked in models that lack vertical
atmospheric ~ data.  Additionally,  the
meteorological data used in the modeling
process were derived from synoptic stations,
which mainly provide generalized
representations of regional atmospheric
conditions and are insufficient for capturing
fine-scale local variations. This mismatch
between input data and real-world conditions
has likely reduced the model’s predictive
accuracy at this station.

Therefore, the integration of high-resolution
mesoscale meteorological models, such as the
Weather Research and Forecasting (WRF)
model, can enhance the accuracy of local
input data—particularly in regions with
complex terrain and heterogeneous climatic
conditions—thereby improving prediction
performance. Similar studies have also
highlighted the adverse effects of
topographical complexity and climatic
variability on the performance of air pollution
forecasting models. For example, research
conducted in Thailand (Bera et al., 2021) and
India (Sirisumpun et al., 2023) reported that
in mountainous or valley regions, ANN
models experienced significant performance
declines, with mean F1-scores ranging
between 0.58 and 0.65. These findings are
consistent with the performance observed at
the Vila station.

Overall, the analysis of Table 4 reveals that
the ANN model performs significantly better

at stations located in areas with well-defined
emission sources, stable dispersion patterns,
and relatively simple topographic conditions.
This underscores the importance of spatial
adaptability in model design, the necessity of
high-resolution meteorological data, and the
inclusion of local geographic characteristics
in the development of air quality forecasting
and early warning systems. Given the
model’s satisfactory performance at selected
stations, it can serve as a foundational
component for the implementation of
localized air pollution alert systems.

Conclusions

The findings of this study demonstrate that
the MLP neural network model, when
individually designed and optimized for each
specific location, can provide reliable
performance in forecasting daily PM, .5
concentrations in both urban and industrial
environments. Analysis across the three
monitoring stations revealed that the model’s
performance is strongly influenced by
topographic  features, homogeneity of
emission sources, and local climatic stability.
Stations characterized by stable dispersion
patterns and well-defined pollutant sources
yielded significantly higher predictive
accuracy, whereas performance declined in
areas with variable meteorological conditions
or diverse emission sources.

Moreover, it was shown that applying
techniques such as data standardization, early
stopping during the training phase, and
tailoring the network architecture based on
the statistical characteristics of each station
substantially enhanced the model’s precision.
A key finding was the pivotal role of Pearson
correlation analysis in identifying effective
input variables. The results indicated that
parameters such as air temperature, relative
humidity, and average wind speed exhibited
the strongest correlations with PM, .5
concentration  fluctuations. In  contrast,
variables such as wind direction and solar
radiation had negligible influence on
predictive accuracy and were excluded from
the model’s input dataset. A notable
observation was the variation in the optimal
number of hidden layer neurons across the
different  stations,  underscoring  the
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importance of avoiding a uniform network
architecture for all geographic locations.

Based on these results, it can be concluded
that neural network models—when adapted
to site-specific characteristics—offer
considerable potential as supportive tools in
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