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This research presents a data-driven approach for forecasting daily 

PM2.5 concentrations using a multilayer perceptron (MLP) neural 

network across three urban monitoring sites in Mashhad, Iran—

Sajjad, Torogh, and Vila—each reflecting a unique land-use 

profile. The study utilized daily datasets collected from 2018 to 

2023, and a dedicated MLP model was trained for each station. 

Various training algorithms were assessed to identify the most 

suitable configuration, with model complexity fine-tuned by 

adjusting the number of neurons in the hidden layer. Key input 

features included meteorological variables from the preceding day 

(such as wind speed, ambient temperature, precipitation, solar 

radiation, and relative humidity), the previous day's PM2.5 

concentration, and calendar-based temporal factors. To improve the 

network’s predictive capability and prevent overfitting, data 

normalization and early stopping strategies were applied. The best 

predictive performance was recorded at the Sajjad station, where 

the model achieved an R
2
 value of 0.79 and an MAE of 6.77 µg/m

3
. 

While the Torogh station yielded moderate predictive accuracy, the 

Vila station exhibited weaker performance. The models 

demonstrated strong capability in identifying pollution episodes, 

with true positive rates between 66% and 74%, and a minimum 

false alarm rate of 0.18 at the Sajjad station. Spatial disparities in 

model performance were attributed to localized environmental and 

climatic factors, including terrain variation and emission source 

intensity. Overall, the findings confirm the potential of MLP-based 

models as practical tools for daily air quality prediction and support 

their integration into urban pollution alert systems. 
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Introduction 

One of the critical factors affecting public 

health is air quality, which is largely 

influenced by the concentration of particulate 

matter. Among these, fine particulate matter 

with a diameter of less than 2.5 micrometers 

(PM2.5) has been widely recognized for its 

direct association with adverse health effects 

(Biswal et al., 2022). Elevated levels of PM2.5 

have been linked to changes in lifestyle, 

reduced life expectancy, and increased 

mortality rates. Numerous studies have 

demonstrated a statistically significant 

correlation between atmospheric PM2.5 

concentrations and negative health outcomes 

(Yang et al., 2023). Consequently, various air 

quality standards for PM2.5 have been 

established based on hourly, daily, and 

annual exposure limits. According to the 

latest guidelines of the World Health 

Organization, the recommended annual and 

24-hour average limits for PM2.5 are 5 and 15 

µg/m
3
, respectively (WHO, 2021). In Iran, 

based on the national air quality standard 

approved in 2016, these thresholds are set at 

12 and 35 µg/m
3
, respectively (DOE, 2016). 

Meteorological factors such as wind speed 

and direction, temperature, precipitation, and 

planetary boundary layer height significantly 

influence the variability of PM2.5 

concentrations in the atmosphere. Severe air 

pollution episodes typically occur in regions 

where geographical features and atmospheric 

stability inhibit natural ventilation, leading to 

the accumulation of pollutants like PM2.5 

(Feng et al., 2019). These particles, primarily 

emitted from combustion sources such as 

urban traffic and industrial activities, remain 

suspended in the atmosphere for extended 

periods due to their ultrafine size and can 

rapidly reach critical concentration levels. 

Under such conditions, immediate 

interventions—such as traffic restrictions, 

school closures, or the suspension of 

polluting activities—are often required. 

Accordingly, both national and international 

air pollution control regulations mandate the 

implementation of automated operational 

procedures to prevent pollutant 

concentrations from exceeding predefined 

alert thresholds (DOE, 2016; WHO, 2021). 

Mashhad, one of Iran’s major and densely 

populated metropolitan cities, exhibits both 

urban and semi-industrial characteristics due 

to its religious, touristic, and industrial 

significance. A substantial portion of PM2.5 

emissions in Mashhad originates from mobile 

sources, including aging vehicles, diesel 

buses, and motorcycles. While most urban 

areas rely on natural gas for heating, 

suburban districts still utilize liquid fuels, 

especially in colder months, contributing to 

localized PM2.5 increases. Additionally, 

natural sources like windblown dust from 

nearby deserts also elevate ambient PM2.5 

levels (Shahsavani et al., 2020). 

Given the health impacts associated with 

PM2.5, this pollutant has become a major 

public concern in the city of Mashhad. 

Forecasting PM2.5 concentrations prior to 

pollution episodes can facilitate more 

effective interventions to protect public 

health. A wide range of operational early 

warning systems—based on statistical and 

hybrid modeling approaches—have been 

developed to enable proactive and real-time 

responses to air pollution events. In this 

context, predictive models have been 

increasingly utilized as supportive tools for 

air quality management in various regions 

around the world. 

Artificial neural networks (ANNs) have been 

widely applied to forecast the concentrations 

of various pollutants over different time 

scales, yielding promising results (Etemad-

Shahidi et al., 2010; Zoqi et al., 2016). In air 

quality prediction studies, methods such as 

ANNs, multiple linear regression (MLR), and 

stepwise regression (SWR) are among the 

most commonly used approaches (Shams et 

al., 2023). Due to the complex and nonlinear 

relationships between meteorological 

parameters and pollution levels, ANNs have 

demonstrated superior performance compared 

to traditional statistical models (Cakir and 

Sita, 2020). Since their initial application in 

modeling atmospheric pollutant 

concentrations (Boznar et al., 1993), ANNs 

have been regarded as a reliable method in 

this field. 

Although forecasting particulate matter 

concentrations is more complex than 
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modeling gaseous pollutants—due to the 

intricate processes involved in aerosol 

formation, transport, and removal (Sokhi et 

al., 2021) —neural networks have 

demonstrated high accuracy owing to their 

ability to identify and model nonlinear 

relationships (Su et al., 2025). Feedforward 

neural networks with error backpropagation 

(FFNNs) are among the most commonly used 

neural network architectures for predicting 

pollutants such as PM2.5, PM10, O3, SO2, and 

CO, due to their capacity to model complex 

nonlinear interactions (Elbayoumi et al., 

2015). In one study, several machine learning 

methods were used to predict PM2.5 

exceedance events, and FFNNs exhibited 

superior performance (Suri et al., 2023). In 

other studies, various machine learning 

approaches—including FFNNs, pruned 

neural networks (PNNs), and lazy learning 

(LL) techniques—have been applied for 

PM2.5 concentration prediction, with FFNNs 

consistently outperforming the alternatives 

(Yang and Chen, 2021). Another study 

analyzed multiple methods for forecasting 

daily average PM2.5 concentrations. The 

results of two types of multilayer perceptron 

(MLP) networks—an important subclass of 

FFNNs—and a radial basis function (RBF) 

network were compared with two classical 

models, and the MLP model demonstrated 

superior predictive performance (Ganesh et 

al., 2018). 

In the present study, a model was developed 

to predict daily PM2.5 concentrations based on 

air pollution data collected from three 

monitoring stations—Sajjad, Vila, and 

Torogh—in the city of Mashhad. These 

stations represent diverse urban conditions: 

the Sajjad station is located in a densely 

populated, high-traffic area; the Vila station 

is situated in a region with moderate 

population density; and the Torogh station is 

positioned on the southeastern outskirts of the 

city, where air quality is influenced by 

industrial activities and heavy-duty vehicle 

traffic. 

An MLP neural network was employed to 

predict the daily average PM2.5 

concentrations at the selected monitoring 

stations. Model inputs included the previous 

day's average PM2.5 concentration as well as 

the previous day's meteorological parameters, 

such as mean wind speed and direction, 

precipitation, solar radiation, temperature, 

and relative humidity. Additionally, to 

account for variations in traffic patterns 

across different days of the week and 

throughout the year—due to Mashhad’s 

religious and touristic nature—variables such 

as the day of the week (1 to 7) and the month 

of the year (1 to 12) were incorporated into 

the model as input features. The primary 

objective of this study is to protect at-risk 

populations by providing accurate and timely 

information on air quality. 

Materials and Methods 

Study Area 

This study was conducted in the metropolitan 

city of Mashhad, located in northeastern Iran. 

With a population exceeding 3.5 million, 

Mashhad is the second most populous city in 

the country after Tehran. Due to its religious 

and touristic significance, the city attracts 

over 20 million domestic and international 

pilgrims and tourists annually. These 

characteristics have led to high urban traffic 

density, increased fossil fuel consumption, 

and the expansion of commercial and service 

activities—major sources of PM2.5 emissions. 

Topographically, Mashhad is situated on a 

plain at an average elevation of 

approximately 980 m above sea level. It is 

surrounded by the Hezar-Masjed Mountains 

to the north (with elevations exceeding 2800 

m) and the Binalood Range to the southwest 

(reaching approximately 3211 m). This 

complex terrain gives rise to specific climatic 

phenomena such as mountain-to-plain 

breezes, nocturnal temperature inversions 

during cold nights, and convective airflows in 

warmer seasons. These conditions can 

contribute to elevated pollutant 

concentrations or the persistence of pollutants 

near the surface, particularly during winter 

when thermal inversion events are more 

intense. 

The average annual temperature in Mashhad 

is approximately 12.4 °C, and the mean 

annual precipitation is reported to be around 

248.6 mm. The prevailing winds in this 

region typically blow from the west and 

northwest, with an average speed of about 
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3 m/s (Daneshvar et al., 2025). On average, 

approximately 86 days per year in Mashhad 

are classified as having unhealthy air quality 

for sensitive groups—including children, the 

elderly, and individuals with respiratory 

illnesses. This condition is primarily 

attributed to combustion-related sources such 

as heavy traffic congestion, domestic heating, 

industrial activities, and regional climatic 

factors (Mohammadi et al., 2022). 

In this study, data from three air quality 

monitoring stations were used, each located 

in areas with distinct environmental 

characteristics and pollution sources. The 

Sajjad station was selected to represent urban 

background pollution associated with PM2.5. 

This station is situated in the city center at an 

elevation of approximately 1000 m above sea 

level, near Falasteen Square, and within less 

than 100 m of major roads such as Sajjad and 

Ahmadabad Boulevards. This area is among 

the busiest traffic zones in Mashhad and is 

significantly influenced by emissions from 

both light and heavy vehicles. 

The Torogh station, located in the 

southeastern part of Mashhad at an elevation 

of approximately 1020 m above sea level, lies 

about 15 km from the city center and near the 

Torogh Industrial Zone. This station reflects 

the combined impact of pollution from high 

diesel vehicle traffic, industrial activities, and 

emissions from heavy-duty transportation 

sources. 

The Vila station is situated in a mixed 

residential-commercial area with moderate 

traffic density in the southwestern part of the 

city, at an elevation of approximately 970 m. 

It is located about 5 km from the city center 

and is relatively distant from direct sources of 

industrial emissions. Therefore, this station is 

considered representative of areas with lower 

background pollution levels. 

Design and Training of MLP Neural 

Networks 

In this study, three MLP neural networks 

were developed to predict the daily average 

concentration of PM2.5 at three air quality 

monitoring stations in Mashhad: Sajjad, 

Torogh, and Vila. Each network was 

independently designed and trained for a 

specific station—ANN1 for Sajjad, ANN2 

for Torogh, and ANN3 for Vila. 

The initial dataset comprised several years of 

hourly pollutant concentrations and 

meteorological parameters. These data were 

preprocessed using the Python programming 

language, with the aid of the pandas library 

for structured data manipulation and NumPy 

for numerical computations. During 

preprocessing, the data were time-indexed by 

date and aggregated into daily values (24-

hour averages) to enable the prediction of 

next-day PM2.5 concentrations. In instances 

where one or more input variables were 

missing for a given day, the corresponding 

row was removed from the dataset to avoid 

errors associated with imputation of missing 

values. Ultimately, approximately 70–80% of 

the daily data for each station remained 

complete and was deemed suitable for model 

development. 

The general architecture of each network 

consisted of three main layers: an input layer, 

a hidden layer, and an output layer. The input 

layer incorporated the modeling variables, 

including meteorological and air quality 

parameters. The hidden layer comprised 

several neurons that computed the weighted 

sum of the inputs and passed the results 

through a nonlinear tangent sigmoid 

activation function. The final output was 

produced in the output layer by combining 

the weighted outputs of the hidden layer 

neurons using a linear activation function. 

The use of the tangent sigmoid function in 

the hidden layer enables the network to 

capture nonlinear mappings and model 

complex relationships, while the linear 

activation function in the output layer ensures 

the generation of continuous outputs without 

additional nonlinear transformation. This 

combination of activation functions provides 

an efficient framework for various prediction 

problems (Zoqi et al., 2010). 

To identify the most appropriate training 

algorithm for each station, initial neural 

networks with 10 neurons in the hidden layer 

were designed and trained using several 

algorithms. The performance of each 

algorithm was evaluated on the training, 

validation, and testing datasets using 
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statistical performance metrics. The 

algorithm yielding the best overall 

performance was selected for further 

modeling. 

Once the optimal training algorithm was 

identified, the process of determining the 

optimal number of neurons in the hidden 

layer for each network began. Networks were 

initially trained with 10 neurons, and the 

number of neurons was then gradually 

increased to assess different network 

configurations. For each configuration, 

statistical performance indicators were 

recorded and analyzed for the training, 

validation, and testing sets. This process 

continued until the most efficient network 

structure—based on performance metrics—

was identified for each monitoring station. 

To prevent overfitting, network structures 

that exhibited decreased training error but 

increased validation or testing error were 

excluded. Network training was performed 

using the backpropagation algorithm, aiming 

to minimize the discrepancy between 

predicted and actual outputs. This process 

involved a forward pass for signal 

propagation and a backward pass for 

updating the connection weights through 

error backpropagation. 

The modeling process was conducted using 

MATLAB software. To mitigate overfitting, 

the dataset was split into 70% for training, 

15% for validation, and 15% for testing. The 

early stopping method was employed to 

further reduce the risk of overfitting. 

Additionally, to enhance the stability and 

reliability of the results, each network was 

independently trained three times. 

Data Preparation 

For each of the three monitoring stations in 

Mashhad (Sajjad, Vila, and Torogh), separate 

daily datasets were compiled for the period 

from 2018 to 2023. These datasets included 

both meteorological parameters and PM2.5 

concentration levels. Meteorological data—

comprising air temperature (°C), relative 

humidity (%), average wind speed (m/s), 

wind direction (degrees), and precipitation 

(mm)—were obtained from the Khorasan 

Razavi Meteorological Organization. 

PM2.5 concentration data were acquired from 

the Khorasan Razavi Department of 

Environment. These data were continuously 

recorded on an hourly basis using online beta 

attenuation monitoring instruments. In this 

method, an airstream passes over a filter, and 

the decrease in beta radiation intensity—due 

to the accumulation of particulate matter—is 

used to calculate the mass concentration of 

PM2.5. Although beta attenuation monitors are 

recognized as semi-reference methods 

(Shukla and Aggarwal, 2022), to enhance 

measurement accuracy, the recorded data 

were corrected using adjustment coefficients 

derived from comparisons with gravimetric 

reference methods when necessary. These 

correction coefficients were calculated 

separately for each station and on a seasonal 

basis and were applied only when the 

correlation coefficient between beta and 

gravimetric data exceeded 0.8. Data coverage 

over the study period (2018–2023) was 

approximately 80% for each station. To 

maintain analytical integrity, no extrapolation 

or interpolation was performed to replace 

missing data. In cases where input variables 

were missing for a particular day, the 

corresponding daily record was entirely 

excluded from the modeling dataset to ensure 

consistency and reliability during training and 

validation phases. 

The annual average PM2.5 concentration 

during the study period ranged from 35 to 38 

μg/m³ at the Sajjad station, 26 to 32 μg/m³ at 

the Torogh station, and 20 to 28 μg/m³ at the 

Vila station. These variations reflect the 

relative intensity of local emission sources, 

including traffic, industrial activity, and 

domestic heating, in different parts of the 

city. 

To provide an overview of the statistical 

characteristics of the dataset used in this 

study, descriptive indicators—including 

minimum, maximum, mean, and standard 

deviation—were calculated for the main 

parameters (PM2.5 concentration, temperature, 

humidity, wind speed, and precipitation). The 

results of this statistical analysis are 

presented in Table 1. These indicators help 

identify data variability and offer insights 

into the distribution of variables over the 

study period. 
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These values indicate considerable variability 

in both pollutant concentrations and 

meteorological conditions, which is crucial 

for understanding the dynamics of PM2.5 

behavior and its interaction with 

environmental parameters in the urban 

context of Mashhad. 

Table 1. Descriptive statistics of meteorological variables and PM2.5 concentrations over the six-year 

period (2018–2023) 

Variable Range Minimum Maximum Mean Standard Deviation 

PM2.5 concentration at Sajjad Station (µg/m3) 112.08 1.01 113.09 36.54 18.81 

PM2.5 concentration at Torogh Station (µg/m3) 151.23 3.62 154.85 29.97 26.43 

PM2.5 concentration at Vila Station (µg/m3) 140.00 1.12 141.12 22.30 23.03 

Average precipitation (mm) 49.80 0.00 49.80 0.56 2.55 

Maximum temperature (°C) 52.90 -9.70 43.20 23.35 10.29 

Average temperature (°C) 48.70 -14.50 34.20 16.81 9.18 

Maximum wind speed (m/s) 18.00 2.00 20.00 6.99 2.59 

Average wind speed (m/s) 9.00 0.25 9.25 3.04 1.07 

Average relative humidity (%) 88.25 11.75 100.00 49.04 21.68 

 

As shown in Table 1, the variables under 

investigation exhibit different scales and 

ranges. For example, PM2.5 concentrations at 

the Sajjad station range from 1.01 to 113.09 

µg/m
3
, while the average wind speed varies 

from 0.25 to 9.25 m/s. These wide disparities 

in variable ranges highlight the necessity of 

standardization. Without it, variables with 

larger numerical ranges—such as PM2.5—

may lead to unbalanced learning, reduced 

convergence speed during model training, 

and numerical instability (Zoqi and Saeedi, 

2011). 

To address this issue, this study employed a 

standardization approach in which the input 

data were transformed to have a mean of zero 

and a standard deviation of one (Equation 1). 

This process promotes a more stable and 

uniform gradient flow, reduces numerical 

instabilities caused by large input values, and 

accelerates convergence in gradient-based 

optimization algorithms. It also enhances the 

effectiveness of activation functions. 

Additionally, centering the features around 

the mean and bringing them onto a 

comparable scale improves model 

interpretability and contributes to more 

efficient learning and better generalization to 

unseen data (Zoqi, 2024). 

Furthermore, to incorporate temporal 

categorical features such as the day of the 

week and the month of the year, one-hot 

encoding was applied. In this method, each 

category (i.e., each weekday or month) is 

represented as a distinct binary vector, 

thereby preventing the erroneous imposition 

of ordinal or numerical relationships between 

categories. The use of one-hot encoding 

eliminates numerical bias and enables the 

model to capture temporal patterns more 

accurately, ultimately improving its 

predictive performance. 

 

        
   

 
 (1) 

 

where  scaled is the standardized value, X is 

the original value, μ is the mean of the 

values, and σ is the standard deviation. 

 

Input Variables 

The selection of variables examined in this 

study was based on a review of relevant 

literature and the availability of existing data. 

To assess the appropriateness of the selected 

variables and evaluate the relationships 

among them, Pearson correlation analysis 

was employed. This method is a fundamental 

and widely used technique in statistical 

analysis and data mining for measuring the 

strength and direction of the linear 

relationship between two continuous 

variables (Zoqi, 2024). The correlation 

coefficient, calculated according to Equation 

(2), quantifies the linear dependence between 

each pair of variables within the range of [–1, 

+1], where +1 indicates a strong positive 

relationship, –1 signifies a strong negative 

relationship, and 0 denotes the absence of a 

significant linear association. The aim of this 

process was to identify the most influential 
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variables affecting the dependent variable and 

to eliminate irrelevant or redundant features.  
 

    
      ̅      ̅ 

√      ̅        ̅  
 (2) 

 

In Equation (2), X and Y represent a pair of 

variables, while  ̅ and  ̅ denote the mean 

values of these variables, respectively. 

In this study, a Pearson correlation matrix 

was constructed—a symmetric structure in 

which each cell represents the correlation 

coefficient between a pair of variables. 

Analyzing this matrix enables the 

identification of highly correlated variables—

those with an absolute correlation coefficient 

greater than 0.8. Such high correlations 

indicate multicollinearity and redundancy of 

information; in these cases, the associated 

variables are excluded to prevent adverse 

effects on model stability and accuracy. 

Additionally, variables showing a weak 

correlation with the output variable (absolute 

value less than 0.1) are removed, as they have 

minimal explanatory power for the dependent 

variable and do not significantly contribute to 

model performance (Cheng et al., 2022). A 

careful application of Pearson correlation 

analysis enhances the precision of variable 

selection, improves model generalizability, 

and reduces unnecessary complexity. 

Results and Discussion 

Correlation Analysis between Input 

Variables and PM2.5 Concentration 

Prior to designing the neural network model, 

the Pearson correlation matrix was calculated 

to assess the relationships between PM2.5 

concentration and other measured parameters 

at each station. As shown in Figure 1, some 

variables exhibit significant correlations with 

PM2.5 concentrations, while others show 

negligible influence on this pollutant. Among 

the examined parameters, relative humidity 

demonstrated a moderately strong negative 

correlation with PM2.5 (correlation 

coefficients ranging from -0.38 to -0.45 

across different stations), indicating a 

decrease in particle concentration with 

increasing humidity. This inverse relationship 

can be attributed to enhanced wet deposition 

and reduced atmospheric residence time of 

particles (Emekwuru and Ejohwomu, 2023). 

Air temperature showed a moderate positive 

correlation with PM2.5 (correlation 

coefficients between 0.30 and 0.36 across 

stations), which may result from atmospheric 

stability during warmer periods of the day, 

reduced humidity, and limited dispersion of 

pollutants. Moreover, a negative correlation 

was observed between temperature and 

relative humidity, as rising temperatures 

increase the air’s capacity to hold water 

vapor, thereby reducing relative humidity 

(Emekwuru and Ejohwomu, 2023). Under 

such conditions, higher temperatures not only 

elevate anthropogenic activity and pollutant 

emissions but also reduce the effectiveness of 

natural removal processes such as wet 

deposition, while facilitating the resuspension 

of particulate matter. Additionally, local 

atmospheric stability in the lower boundary 

layer can further inhibit pollutant dispersion 

(Nyayapathi et al., 2025). Overall, hot and 

dry conditions promote increased generation, 

resuspension, and persistence of PM2.5, 

ultimately leading to elevated concentrations. 

Conversely, during winter, the dominant 

meteorological conditions—such as high 

relative humidity, stratiform cloud cover, and 

light precipitation—contribute to lower 

temperatures and enhanced wet deposition, 

thereby reducing PM2.5 levels (Emekwuru 

and Ejohwomu, 2023). 

However, the influence of temperature on 

PM2.5 concentration extends beyond 

variations in relative humidity or atmospheric 

instability. One of the key factors in this 

context is the inversion layer height, which is 

directly affected by the thermal structure of 

the atmosphere (Liu et al., 2022). Climatic 

assessments of Mashhad indicate that the 

base height of temperature inversion layers 

varies between 500 and 1000 m from June to 

September, and between 100 and 500 m from 

October to May. Notably, in March, the mean 

minimum inversion height reaches 

approximately 120 m (Mansouri Daneshvar 

et al., 2024). This period coincides with the 

highest frequency of critical air pollution 

episodes, as strong, low-altitude inversions 

trap pollutants within the lower atmospheric 

layers, leading to significant increases in their 

concentrations. Therefore, temperature plays 

a more complex role in regulating PM2.5 



-------- et al., / Environmental Resources Research 14, 1 (2026)                                                                                  88 

levels by influencing atmospheric 

stratification and stability, which cannot be 

fully captured through simple correlation 

analyses.

 

 

 

 
Figure 1. Spearman correlation matrix between pollutant and meteorological variables at stations: (a) 

Sajjad, (b) Torogh, and (c) Vila 

 

The analysis of the Pearson correlation 

matrix revealed a weak negative correlation 

between precipitation and PM2.5 

concentration across the monitored stations, 

with coefficients ranging from -0.12 to -0.18. 

Although this correlation is statistically weak, 

its influence should not be entirely 

disregarded. Precipitation contributes to the 

temporary reduction of airborne particulate 

matter through the wet deposition process, 

which removes particles from the atmosphere 

and transports them to the ground. In the 

semi-arid climate of Mashhad, where the 

average annual precipitation is reported to be 

approximately 220–260 mm (Daneshvar et 

al., 2025), not only is the number of rainy 

days limited, but the intensity and persistence 

of rainfall are also generally insufficient to 

cause a significant and sustained reduction in 

particle concentrations (Jaafari et al., 

2018).Therefore, on short-term timescales 

(daily or weekly), precipitation cannot be 

considered a major determinant in explaining 

PM2.5 concentration variability, and its impact 

is mainly confined to intense or exceptional 

rainfall events. These findings are consistent 

with previous studies, which have 

demonstrated that the effect of precipitation 

in arid and semi-arid regions is significantly 

weaker than in humid climates due to lower 

rainfall frequency and intensity (Marzouni et 

al., 2016). 

Based on the correlation matrix results, the 

mean wind speed showed a moderate 

negative correlation with PM2.5 

concentration, with correlation coefficients 

ranging from -0.28 to -0.36 across different 

stations. This suggests that higher wind 

speeds are generally associated with lower 

PM2.5 concentrations. Wind plays an essential 

role in ventilating polluted air through 
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processes such as dilution, horizontal and 

vertical dispersion, and the transport of 

pollutants across the lower atmospheric 

layers, particularly under conditions with 

strong regional airflow. However, in this 

study, the most frequent mean wind speed 

was observed in the range of 2.0 to 3.88 m/s, 

indicating that for most days of the year, 

Mashhad experiences relatively low wind 

speeds, and strong wind events are rare. 

Consequently, the moderate level of observed 

correlation can be attributed to these typically 

low wind speeds. If stronger winds were 

more common, the impact of wind on 

reducing PM2.5 concentrations would likely 

be more pronounced. 

The analysis revealed that although westerly 

winds are predominant in the region, their 

low speeds, along with local obstructions 

such as terrain irregularities and dense urban 

structures, significantly limit their effect on 

the dispersion of PM2.5 particles. As a result, 

wind direction showed no statistically 

significant correlation with PM2.5 

concentrations. Therefore, to avoid 

incorporating low-impact variables, reduce 

statistical noise, and enhance model accuracy, 

wind direction was excluded from the ANN 

input parameters. 

Although solar radiation can contribute to the 

formation of secondary PM2.5 through 

photochemical reactions under certain 

conditions, in Mashhad’s dry and semi-

industrial climate, PM2.5 concentrations are 

predominantly influenced by primary 

sources, including vehicular traffic and wind-

induced resuspension of surface dust. 

Moreover, due to the strong correlation 

between solar radiation and air temperature, 

and the absence of a meaningful relationship 

between solar radiation and the model output, 

this variable was also excluded from the 

model inputs to reduce multicollinearity and 

simplify the model structure. 

The analysis of temporal variables revealed a 

weak but positive correlation between PM2.5 

concentrations and both the day of the week 

and month of the year. Spearman’s rank 

correlation coefficients for the relationship 

between day of the week and PM2.5 ranged 

from 0.18 to 0.25, and for month of the year, 

from 0.21 to 0.28 across the three studied 

stations. Although these correlations are 

statistically weak, they reflect the influence 

of temporal patterns in human activity, such 

as traffic volume and commercial operations, 

on particulate matter distribution. 

Additionally, time-related variables may 

indirectly affect pollutant behavior by 

influencing meteorological conditions like 

temperature and atmospheric stability (Zhao 

et al., 2018). 

Further examination of individual stations 

showed that this correlation was strongest at 

the Sajjad station, compared to the Villa and 

Torogh stations. This variation is primarily 

attributed to differences in the type and 

intensity of human activities surrounding 

each monitoring site. The Sajjad district, as a 

major administrative-commercial hub in 

Mashhad, frequently experiences non-local 

traffic flows. Traffic patterns in this area 

fluctuate significantly during weekends, 

public holidays, and religious or social 

events, which in turn influence pollutant 

concentrations. These temporal fluctuations 

lead to greater sensitivity of PM2.5 levels to 

time-related variables at the Sajjad station. 

In contrast, the Villa station is more 

influenced by local activities and relatively 

stable traffic conditions, while the Torogh 

station is situated near industrial zones and 

heavy transportation corridors, which are less 

affected by temporal variations such as 

holidays or special events. Consequently, 

temporal variability in air pollution patterns 

is less pronounced at these two stations 

compared to Sajjad. 

These findings are consistent with previous 

studies in other metropolitan areas, which 

have shown that administrative-commercial 

zones and urban attraction centers are more 

susceptible to fluctuations in PM2.5 

concentrations due to unstable traffic 

volumes (Zhao et al., 2018). 

Neural Network Structure 

To identify the optimal training algorithm for 

neural network modeling, an MLP was 

independently designed for each station using 

a fixed architecture comprising a single 

hidden layer with 10 neurons. The hyperbolic 

tangent sigmoid function was applied as the 
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activation function in the hidden layer, while 

a linear activation function was used in the 

output layer. Five commonly used training 

algorithms available in MATLAB—

Levenberg–Marquardt (LM), Bayesian 

Regularization (BR), Scaled Conjugate 

Gradient (SCG), Resilient Backpropagation 

(RP), and Gradient Descent (GD)—were 

evaluated. Among these, the LM algorithm 

consistently outperformed the others across 

all three stations and was consequently 

selected as the optimal training algorithm. 

This algorithm was employed in subsequent 

stages to refine the network architecture and 

enhance prediction accuracy. 

In this study, an independent neural network 

was developed for each monitoring station. 

The selected LM algorithm was used to train 

an MLP with a single hidden layer of variable 

size. Starting from 10 neurons, the number of 

neurons in the hidden layer was gradually 

increased to assess changes in the model's 

performance metrics, including the 

coefficient of determination (R
2
) and root 

mean square error (RMSE), across the 

training, testing, and validation datasets. The 

performance results for near-optimal 

configurations are summarized in Table 2. 

 
Table 2. Optimization of the hidden layer neuron count for the three monitoring stations 

Station Neuron Count R2 (Train) RMSE (Train) R2 (Test) RMSE (Test) 

Sajjad 

15 0.802 6.12 0.784 7.12 

16 (Optimal) 0.813 5.88 0.793 6.77 

17 0.817 5.71 0.786 6.93 

Torogh 

10 0.786 6.91 0.769 7.89 

11 (Optimal) 0.800 6.76 0.780 7.65 

12 0.808 6.59 0.774 7.82 

Vila 

18 0.706 8.81 0.635 9.81 

19 (Optimal) 0.721 8.66 0.647 9.56 

20 0.729 8.53 0.639 9.73 

 

The results presented in Table 2 indicate that 

increasing the number of neurons in the 

hidden layer consistently enhances model 

accuracy on the training dataset. However, 

this trend does not uniformly extend to the 

test and validation datasets. For instance, at 

the Sajjad station, increasing the number of 

neurons from 15 to 16 improved the 

correlation coefficient (R
2
) on the test data 

from 0.784 to 0.793, while the RMSE 

decreased from 7.12 to 6.77 µg/m
3
. 

Nevertheless, further increasing the neuron 

count to 17 yielded only a marginal 

improvement in training performance, 

accompanied by a decline in test set 

accuracy, indicating the onset of overfitting. 

This behavior was also observed at the 

Torogh and Villa stations, suggesting a 

consistent pattern regarding the impact of 

increasing network complexity. These results 

underscore the importance of avoiding 

unnecessary increases in model parameters, 

which may elevate the risk of overfitting. 

It is worth noting that, during the model 

training process, the early stopping technique 

was employed to prevent overfitting. In this 

study, early stopping was implemented by 

halting training when the validation error 

failed to improve over six consecutive 

epochs. This approach effectively mitigates 

the risk of the model becoming overly fitted 

to the training data. However, despite the use 

of early stopping, an excessive increase in the 

number of neurons in the hidden layer can 

still lead to overfitting due to the model’s 

elevated capacity (Zoqi and Ghavidel, 2009). 

In such cases, the network becomes 

excessively complex, and its generalization 

ability diminishes. As a result, instead of 

learning generalizable patterns, the model 

begins to memorize specific fluctuations in 

the training dataset, leading to reduced 

performance on the test and validation sets. 

Based on the results presented in Table 2, the 

optimal neural network architectures for each 

monitoring station were identified as follows: 

ANN1 for the Sajjad station with 16 neurons, 
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ANN2 for the Torogh station with 11 

neurons, and ANN3 for the Vila station with 

19 neurons in a single hidden layer. All 

models utilized the hyperbolic tangent 

sigmoid activation function in the hidden 

layer and a linear activation function in the 

output layer. 

The variation in the optimal number of 

neurons across the stations can be attributed 

to the distinct statistical characteristics of 

each dataset. Factors such as data variance 

and coefficient of variation, the presence of 

nonlinear patterns of varying complexity, and 

the signal-to-noise ratio at each station 

significantly influence the model capacity 

required for effective learning. Specifically, 

stations like Vila, which exhibit more severe 

fluctuations or more complex temporal 

patterns in PM2.5 concentrations, require a 

larger number of neurons in the hidden layer 

to adequately capture the intrinsic structure of 

the data. This finding underscores that the 

optimal neural network architecture cannot be 

uniform or universally applied across all 

datasets; rather, it must be individually 

determined based on the statistical properties 

and inherent complexity of the data at each 

location. In this context, the trade-off 

between bias and variance is particularly 

important. Increasing the number of neurons 

enhances model capacity, which may reduce 

bias but increase variance, potentially leading 

to overfitting. Conversely, too few neurons 

may result in high bias and underfitting. 

Therefore, determining the optimal number 

of neurons should strike a balance between 

these two factors, ensuring that the model 

maintains sufficient generalization capability 

while accurately capturing complex data 

patterns (Geman et al., 1992). 

 

Neural Network Performance 

The performance of the neural network at the 

three air quality monitoring stations in 

Mashhad—Sajjad, Torogh, and Vila—is 

illustrated in Figure 2. This figure presents 

the statistical performance indicators for the 

training, validation, and testing phases. Based 

on these results, the model exhibited strong 

learning capability during the training phase 

and maintained satisfactory performance in 

both the validation and testing stages. These 

findings demonstrate the model’s adequate 

generalization ability in predicting PM2.5 

concentrations for unseen data. 

 
Figure 2. Comparison of MLP model performance indicators during the training, validation, and testing 

phases at the three monitoring stations 

 

The Sajjad station, located in one of the most 

traffic-congested urban areas of Mashhad, 

demonstrated the highest predictive 

performance. This outcome can be attributed 

to the relatively stable pattern of traffic-

related pollution, spatial and temporal 

consistency in pollutant dispersion, and the 

absence of diverse or complex emission 

sources. The model's statistical performance 

during the testing phase at this station 

included an R
2
 of 0.79, an RMSE of 6.77 

µg/m
3
, a Mean Absolute Error (MAE) of 5.54 

µg/m
3
, and a Mean Absolute Percentage 

Error (MAPE) of approximately 10.73%, 
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indicating good agreement between observed 

and predicted concentrations. 

At the Torogh station, despite its peripheral 

location, high pollution levels were 

recorded—primarily due to industrial 

activities, the movement of heavy-duty diesel 

vehicles, soil erosion, and transboundary 

pollutant transport from neighboring regions. 

In this case, the model achieved a testing-

phase R
2
 of 0.78, an RMSE of 7.65 µg/m

3
, an 

MAE of 5.94 µg/m
3
, and a MAPE of 

approximately 12.09%. Although the 

predictive accuracy at Torogh was slightly 

lower than at Sajjad, the model's performance 

remains within an acceptable range (Gulati et 

al., 2023). 

The Vila station, located in a moderately 

urbanized area near the Binalood mountain 

range, exhibited the weakest performance in 

predicting daily PM2.5 concentrations. 

Nevertheless, even at this station, the model 

demonstrated an acceptable ability to capture 

the general data patterns. During the testing 

phase, the statistical indicators included an R
2
 

of 0.65, an RMSE of 9.56 µg/m
3
, an MAE of 

7.24 µg/m
3
, and a MAPE of approximately 

18.49%. 

The reduced accuracy at this station can be 

attributed to the high spatiotemporal 

variability of multiple pollution sources—

such as dispersed residential, commercial, 

and traffic-related activities—which, unlike 

the Sajjad and Torogh stations, lack spatial 

and temporal coherence. Furthermore, the 

station’s geographical location near 

mountainous terrain influences the formation 

of meteorological phenomena such as 

temperature inversions, regional airflows, and 

specific wind patterns. These factors lead to 

reduced atmospheric stability and nonlinear 

pollutant transport, thereby complicating 

accurate prediction. The interplay of these 

conditions has diminished the model's 

capacity to precisely simulate pollutant 

concentration behavior in this area. 

Figure 3 illustrates the regression results 

between observed and predicted PM2.5 

concentrations during the different phases of 

the modeling process. As shown, a strong 

correlation between actual and predicted 

values is evident at all three monitoring 

stations. 

Based on the results presented in Figures 2 

and 3, the neural network model 

demonstrated higher accuracy in areas with 

more consistent pollution patterns, such as 

the Sajjad station, while its performance 

declined in regions characterized by diverse 

pollution sources or distinct climatic 

conditions. For further validation, the 

findings of this study were compared with 

those of previous research, as summarized in 

Table 3, which corroborates the accuracy and 

effectiveness of the modeling approach 

employed in the present study. 
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Figure 3. Regression plots comparing the actual and predicted daily PM2.5 concentrations using the MLP 

neural network model at the three monitoring stations: Sajjad Station – (a) training data, (b) validation 

data, (c) testing data; Torogh Station – (d) training data, (e) validation data, (f) testing data; Vila Station – 

(g) training data, (h) validation data, and (i) testing data 
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Table 3. Comparison of PM2.5 prediction model performance across different studies 

Study Location Modeling Method R2 RMSE (µg/m3) Reference 

Mashhad, Iran MLP 0.65 – 0.79 6.77 – 9.56 Present study 

Qingdao, China 
Convolutional Neural Network (CNN) and 

Long Short-Term Memory (LSTM) 
0.83, 0.85 8.35, 14.36 (Bai et al., 2024) 

China 
Geographically Weighted Gradient Boosting 

Machine (GW-GBM) 
0.71 – 0.76 25.02 – 25.31 (Zhan et al., 2017) 

Beijing, China 
XGBoost, K-Nearest Neighbors (KNN), 

Support Vector Regression (SVR), LSTM 
0.51 – 0.76 19.58 – 28.54 (Wu et al., 2022) 

Rio de Janeiro, 

Brazil 
Holt–Winters (HW) and ANN – 5.81 – 14.93 

(Ventura et al., 

2019) 

Ahvaz, Iran MLP 0.74 46.44 
(Goudarzi et al., 

2021) 

Tehran, Iran 
3D Convolutional Neural Network with 

Gated Recurrent Unit (3D CNN-GRU) 
0.78 6.44 (Faraji et al., 2022) 

Shanghai, China 
CNN combined with Gradient Boosting 

Machine (CNN-GBM) 
0.85 10.02 (Luo et al., 2020) 

Shanghai, China 
Weighted Artificial Neural Network 

(WANN) 
0.87 10.66 (Guo et al., 2023) 

Kolkata, India Multiple Linear Regression (MLR) and ANN 0.51, 0.69 8.55, 12.58 (Bera et al., 2021) 

Isfahan, Iran ANN, SVM, and KNN 
0.90, 0.85, 

0.82 
5.44, 7.24, 8.51 

(Mohammadi et al., 

2024) 

Thailan Spatio-temporal Deep Learning Model 0.77 7.63 
(Sirisumpun et al., 

2023) 

 

Model Performance Evaluation in 

Predicting Daily PM2.5 Exceedances 

To assess the performance of a prediction 

system, various evaluation metrics can be 

employed. One of the most critical indicators 

is the system’s ability to accurately predict 

exceedances of the daily air quality standard. 

According to the Iranian National Ambient 

Air Quality Standard, the permissible daily 

limit for PM2.5 is set at 35 µg/m
3
 (DOE, 

2016). 

To analyze the model’s effectiveness in 

forecasting exceedance events, three key 

statistical indicators were used: True Positive 

Rate (TPR), False Alarm Rate (FAR), and 

F1-score. These metrics were calculated by 

comparing the predicted values against 

observed data for instances where daily PM2.5 

concentrations exceeded the threshold of 35 

µg/m
3
. 

The parameters used to compute these 

performance indicators include: A, the 

number of correctly predicted exceedance 

events; F, the total number of predicted 

exceedances (both true and false); M, the 

total number of actual exceedance events; 

and N, the total number of days analyzed 

(i.e., total data points). In this context, the 

ratio of true positive predictions to all 

predicted exceedances (A/F) represents the 

precision of the model in identifying 

exceedance cases. 

The TPR, as defined in Equation (3), reflects 

the model’s ability to correctly identify days 

with actual exceedances and is considered a 

measure of the model’s sensitivity. 
 

    
 

 
 (3) 

 

The FAR, as defined in Equation (4), 

indicates the proportion of predicted 

exceedance events that did not actually 

exceed the threshold. 

 

    
   

 
 (4) 

 

The F1-score (Equation 5) represents the 

harmonic mean of precision and sensitivity 
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(TPR). This metric is particularly useful in 

imbalanced classification problems, where 

the number of exceedance and non-

exceedance cases are unevenly distributed. 

The F1-score effectively balances the 

model’s ability to correctly detect 

exceedances while minimizing false alarms. 

A value closer to 1 indicates superior model 

performance. In environmental applications, 

F1-scores greater than 0.70 are typically 

considered acceptable. 
 

         
               

             
 (5) 

 

Table 4 presents the performance metrics of 

the ANN model in predicting exceedance 

events of the daily PM₂ .₅  threshold (35 

µg/m
3
) at three air quality monitoring stations 

in Mashhad during the period 2018–2023. 

The results indicate notable spatial 

differences in model performance. 

Specifically, the ANN model demonstrated 

superior predictive accuracy at the Sajjad 

station, while a marked decline in 

performance was observed at the Vila station. 

 
Table 4. Performance metrics of the ANN model for predicting daily PM₂ .₅  exceedance events (>35 

µg/m
3
) at air quality monitoring stations in Mashhad 

Station 
N (Total 

Days) 

M (Observed 

Exceedances) 

F (Predicted 

Exceedances) 

A (True 

Positives) 
TPR FAR F1-score 

Sajjad 1571 463 421 343 0.74 0.18 0.78 

Torogh 1210 225 198 159 0.71 0.19 0.75 

Villa 1443 323 295 211 0.66 0.28 0.68 

 

At the Sajjad monitoring station, the model's 

performance indicators demonstrate 

considerable success in identifying pollution 

events characterized by daily PM₂ .₅  

concentrations exceeding the regulatory 

threshold. A TPR of 0.74 indicates that 74% 

of actual exceedance events were correctly 

identified. Moreover, a FAR of 0.18 reflects 

the model's ability to minimize false positive 

predictions. The F1-score, a composite metric 

balancing precision and recall, was calculated 

as 0.78, indicating a favorable balance 

between sensitivity and precision in detecting 

critical pollution events. The model’s 

superior performance at the Sajjad station can 

be attributed to the relatively lower density of 

unpredictable pollution sources—such as 

construction activities and episodic public 

events—which often reduce forecasting 

accuracy. Additionally, the relative 

consistency of pollution patterns in this area 

likely enhances the model’s generalizability. 

The ANN model’s performance in predicting 

PM₂ .₅  exceedance events aligns well with 

findings from similar studies conducted in 

regions characterized by stable pollution 

patterns. For instance, F1-scores ranging 

from 0.77 to 0.88 have been reported in 

Isfahan (Mohammadi et al., 2024); an F1-

score of 0.62 was observed in Jakarta 

(Marsha and Larkin, 2019); and TPR values 

between 60% and 75% were documented in 

the western United States (Moustris et al., 

2010). Furthermore, in Athens, the TPR and 

FAR were reported as approximately 0.78 

and 17.9%, respectively (Toharudin et al., 

2023). 

The Torogh monitoring station, located on 

the southeastern outskirts of Mashhad and 

adjacent to industrial zones, exhibited 

relatively stable performance comparable to 

that of the Sajjad station. The F1-score and 

FAR at this station were calculated as 0.75 

and 0.19, respectively, indicating acceptable 

accuracy in predicting pollution events and a 

low rate of false alarms. The presence of 

relatively consistent pollution patterns 

stemming from industrial activities, along 

with the spatial distance from the city 

center—which reduces the diversity of 

pollution sources—are key factors 

contributing to reduced data noise and 

improved model performance. The findings 

of this study are consistent with results 

reported in other industrial regions. For 

instance, ANN models achieved F1-scores of 

approximately 0.76 in the Shah Alam 

Industrial Area, Malaysia (Arafin et al., 
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2024), and F1-scores ranging from 0.74 to 

0.80 in the Puli Industrial Zone in Taiwan 

(Yin et al., 2021). 

In contrast, at the Vila station, the F1-score 

dropped to 0.68, indicating a decline in model 

performance. This station is situated in the 

southwestern part of Mashhad, in an area 

characterized by specific topographic 

features, including proximity to southern 

highlands and urban green spaces. Such 

conditions cause significant variability in 

wind flow and pollution dispersion patterns. 

Furthermore, temperature inversion 

phenomena—especially during early morning 

hours or colder seasons—can lead to the 

accumulation of pollutants in the lower 

atmospheric layers, complicating their 

dispersion patterns. These dynamics are often 

overlooked in models that lack vertical 

atmospheric data. Additionally, the 

meteorological data used in the modeling 

process were derived from synoptic stations, 

which mainly provide generalized 

representations of regional atmospheric 

conditions and are insufficient for capturing 

fine-scale local variations. This mismatch 

between input data and real-world conditions 

has likely reduced the model’s predictive 

accuracy at this station. 

Therefore, the integration of high-resolution 

mesoscale meteorological models, such as the 

Weather Research and Forecasting (WRF) 

model, can enhance the accuracy of local 

input data—particularly in regions with 

complex terrain and heterogeneous climatic 

conditions—thereby improving prediction 

performance. Similar studies have also 

highlighted the adverse effects of 

topographical complexity and climatic 

variability on the performance of air pollution 

forecasting models. For example, research 

conducted in Thailand (Bera et al., 2021) and 

India (Sirisumpun et al., 2023) reported that 

in mountainous or valley regions, ANN 

models experienced significant performance 

declines, with mean F1-scores ranging 

between 0.58 and 0.65. These findings are 

consistent with the performance observed at 

the Vila station. 

Overall, the analysis of Table 4 reveals that 

the ANN model performs significantly better 

at stations located in areas with well-defined 

emission sources, stable dispersion patterns, 

and relatively simple topographic conditions. 

This underscores the importance of spatial 

adaptability in model design, the necessity of 

high-resolution meteorological data, and the 

inclusion of local geographic characteristics 

in the development of air quality forecasting 

and early warning systems. Given the 

model’s satisfactory performance at selected 

stations, it can serve as a foundational 

component for the implementation of 

localized air pollution alert systems. 

Conclusions 

The findings of this study demonstrate that 

the MLP neural network model, when 

individually designed and optimized for each 

specific location, can provide reliable 

performance in forecasting daily PM₂ .₅  

concentrations in both urban and industrial 

environments. Analysis across the three 

monitoring stations revealed that the model’s 

performance is strongly influenced by 

topographic features, homogeneity of 

emission sources, and local climatic stability. 

Stations characterized by stable dispersion 

patterns and well-defined pollutant sources 

yielded significantly higher predictive 

accuracy, whereas performance declined in 

areas with variable meteorological conditions 

or diverse emission sources. 

Moreover, it was shown that applying 

techniques such as data standardization, early 

stopping during the training phase, and 

tailoring the network architecture based on 

the statistical characteristics of each station 

substantially enhanced the model’s precision. 

A key finding was the pivotal role of Pearson 

correlation analysis in identifying effective 

input variables. The results indicated that 

parameters such as air temperature, relative 

humidity, and average wind speed exhibited 

the strongest correlations with PM₂ .₅  

concentration fluctuations. In contrast, 

variables such as wind direction and solar 

radiation had negligible influence on 

predictive accuracy and were excluded from 

the model’s input dataset. A notable 

observation was the variation in the optimal 

number of hidden layer neurons across the 

different stations, underscoring the 
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importance of avoiding a uniform network 

architecture for all geographic locations.  

Based on these results, it can be concluded 

that neural network models—when adapted 

to site-specific characteristics—offer 

considerable potential as supportive tools in 

the development of localized air pollution 

early warning systems and in aiding urban 

management in responding to critical 

pollution events. However, the 

implementation of such systems requires 

improved spatial resolution of meteorological 

datasets, exploration of various temporal 

forecasting scenarios, and ongoing validation 

of model performance using updated 

observational data. 
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