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Introduction 

Climate change has become a global threat 

that significantly impacts the water resources 

sector (Adhikari et al., 2015; Amirabadi-

zadeh et al., 2016). In the past two decades, 

climate change has been one of the most 

important and controversial topics among 

climatologists. Humanity, as part of the 

climate system, significantly influences 

climate behavior. Today, with increasing 

population and, consequently, increasing 

demand for water and food, agricultural 

expansion, deforestation, desertification, and 

the growing use of fossil fuels, the human 

role in climate change has become more 

prominent than ever (Jahangir et al., 2022). In 

recent years, with the increasing global 

warming, the changes in abnormal events 

continue to grow larger. For instance, 

extreme heat waves that previously occurred 

once every decade now happen 

approximately three times in ten years. With 

merely half a degree Celsius increase in the 

global average temperature, such heat waves 

will occur four times per decade, and the 

resulting temperature will be nearly two 

degrees Celsius hotter. If global warming 

continues, the frequency and intensity of 

record-breaking rainfall events and droughts 

will similarly increase. The probability of 

severe droughts, which previously occurred 

approximately once every decade, has 

increased by 70%, and if the world warms by 

two degrees Celsius, this number could 

double (IPCC Sixth Assessment Report, 

2021). Due to global warming, the trend of 

destructive droughts and floods has also 

increased (Weijing et al., 2015; Zhang, 2015; 

Si et al., 2016). To work with GCMs, 

downscaling methods, typically dynamic and 

statistical methods, are commonly used. 

These methods are employed to address the 

challenge of spatial development in GCMs. 

This is achieved by linking large-scale 

atmospheric variables with climatic 

parameters at a local scale. Downscaling 

methods convert the large-scale output of 

GCMs into high-resolution output for the 

studied region (Saref & Reggular, 2016; 

Gebrchorcus et al., 2019, Mwabumba et al., 

2022). Ferreira et al. (2018) studied summer 

precipitation fluctuations in the southeastern 

United States and showed that with 

increasing air temperature and humidity, 

precipitation will increase in the future in that 

region. Jiang et al. (2020) evaluated 

precipitation changes in Central Asia until the 

end of the 21st century using data from 15 

CMIP6 models under SSP scenarios. The 

results indicated an increasing trend in the 

average annual precipitation across all 

climatic scenarios in the study area.  Heydari 

et al. (2020) studied precipitation and 

temperature fluctuations in the Urmia River 

basin using HadGEM2 model data and 

showed that precipitation would decrease and 

temperature would increase in the future. 

Keown et al. (2021) investigated the trend of 

precipitation and air temperature changes in 

Northwest China using data from 5 CMIP6 

models and showed that CMIP6 models 

simulate air temperature better than 

precipitation. They also showed that 

precipitation and air temperature would 

increase under future scenarios in the study 

area. Javaherian et al. (2021) used the 

CanESM2 predictive model based on RCP 

scenarios (RCP2.6, RCP4.5, and RCP8.5) for 

the period 2020-2060 and the SDSM model 

for downscaling daily precipitation and 

temperature parameters over an 11-year base 

period (1984-1995) to predict the effects of 

climate change on the Lar Dam basin in Fars 

province. The results of this study indicated 

that daily average temperature would increase 

by 1.01 to 1.12 degrees Celsius, and daily 

precipitation would increase by 21 to 23 

percent across all three studied scenarios. Qin 

et al. (2021) evaluated precipitation and air 

temperature fluctuations in Northwest China 

using CMIP6 models and showed that these 

models could simulate temperature better 

than precipitation. They also showed that 

average temperature and precipitation would 

significantly increase in various scenarios in 

the 21st century in the study area. Yu et al. 

(2021) studied average temperature 

fluctuations in China using 20 GCMs from 

CMIP6 models and three SSP scenarios, 

showing that average temperature would 

increase in future scenarios. Basil et al. 

(2022) investigated the effects of climate 

change on precipitation and air temperature 

parameters in the two provinces of Buenos 

Aires and Córdoba in Argentina and showed 

that annual maximum and average 
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temperatures would increase in both studied 

provinces. They also showed an upward trend 

in precipitation during autumn and winter. 

Trai et al. (2022) evaluated the performance 

of CMIP5 and CMIP6 models in simulating 

precipitation and discharge parameters in the 

Mekong River basin at the border between 

China, Myanmar, Thailand, Laos, Cambodia, 

and Vietnam, showing that CMIP6 models 

have higher accuracy compared to CMIP5 

models. They also showed that, according to 

CMIP6 model results, effective precipitation 

and annual peak discharge would increase 

under SSP scenarios. Majdi et al. (2022) 

evaluated precipitation and temperature 

fluctuations in the Middle East and North 

Africa, showing that air temperature would 

increase by 0.8 to 3.3 degrees Celsius, and 

precipitation would decrease by 5 to 133 

millimeters. Zhang et al. (2022) studied the 

temporal and spatial characteristics of 

convective and large-scale precipitation in 

Southeast China using MERRA-2 model data 

and showed that total precipitation and large-

scale precipitation would increase in future 

periods. Acar and Gönçigil (2022) assessed 

the trend of precipitation changes at 142 

synoptic stations in Turkey and showed that 

in most of the studied stations, the 

precipitation trend is upward in winter, and 

overall, precipitation in the study area will 

have a decreasing trend. 

Based on the research conducted, it is clear 

that the selection of General Circulation 

Models (GCMs) is critical and important due 

to computational limitations and fundamental 

uncertainties. Furthermore, with the increase 

in global surface temperature, it is necessary 

to evaluate its regional impact for a more 

accurate understanding of future challenges 

and related planning. On the other hand, 

considering that the selseleh plain has faced a 

significant decrease in rainfall and increase in 

temperature in recent years, and also the 

production of crops in this plain has 

decreased, therefore, investigating the 

climatic conditions of the selseleh plain is a 

necessary and essential matter, which can 

greatly help in developing a plan for 

adaptation to water scarcity.Therefore, this 

research will examine the impact of climate 

change on temperature and precipitation 

parameters using CMIP6 climate models in 

the selseleh County of Lorestan Province, 

utilizing data from the CanESM5 prediction 

model and the LARS-WG downscaling 

model based on designed emission scenarios 

in the baseline period of 1997to 2022 to 

predict the atmospheric conditions during the 

future period. Three scenarios will be used 

for the twenty-year periods in the near future 

from 2031-2050 and 2051-2100 : the 

optimistic SSP126, the intermediate  SSP245, 

and the pessimistic SSP585. 

Materials and Methods 

Study Area 

Lorestan Province, located in Iran, is one of 

the mountainous regions in western Iran, 

predominantly covered by the Zagros 

Mountains. The climate of Lorestan Province 

is diverse, with noticeable variations from the 

northeast to the southwest. One of the most 

significant and water-rich plains in this 

province is the Selseleh (or Aleshtar) Plain. 

This plain is situated between longitudes 48° 

2' to 48° 31' E and latitudes 33° 43' to 34° 05' 

N, with an average elevation of about 1,580 

meters above sea level and an area of 196 

km². The average annual rainfall in the plain 

is 54 mm, and the mean annual temperature 

is 8.8°C. Topographically, the plain consists 

of lowlands, relatively flat areas, mountains, 

and foothills. The mountains in the region, 

which play a significant role in the formation 

and development of alluvial systems, are 

largely influenced by two key 

factors: climate and tectonic movements. The 

fractures and faults in this area have created 

suitable channels for water flow, thus playing 

a crucial role in the formation of channeled 

streams. Figure 1 shows the geographical 

location of the study area. Precipitation and 

temperature graphs are displayed in Figures 2 

and 3. 
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Figure 1. Study area 

 

 
Figure 2. Precipitation status of the study area 
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Figure 3. Temperature status of the study area 

 
LARS-WG Downscaling Model 
The LARS-WG model consists of three main 

parts: calibration, validation, and simulation 

of climatic conditions for future time 

decades. The model requires a file that 

specifies the climatic behavior of the study 

area during the base time period. To create 

this file, daily precipitation values, minimum 

and maximum temperatures, and sunshine 

hours are needed for a specific time period. 

The model can then use this file to simulate 

the conditions governing future periods. The 

first step in preparing the data for input into 

the LARS-WG model is calibration. In this 

step, approximately 75% of the historical 

period data, including precipitation, 

minimum temperature, and maximum 

temperature, is used. Then, the results from 

this step are compared with the remaining 

25% of the historical period data to determine 

similarities. Analysis of the calibration 

process identifies the collected (observed) 

data to determine their characteristics and 

create a location-based cumulative 

probability distribution for various climatic 

variables. Based on the input data, the LARS-

WG model produces the required files, 

including climatic parameters and seasonal 

distributions of wet and dry periods. During 

the simulation process, the number of years 

to be randomly determined controls the 

random components of climate generation 

(Irwin et al., 2012; Jahangir et al., 2022). The 

next step is to validate the results to ensure 

sufficient confidence in generating daily 

values of meteorological variables that have 

similar characteristics to the historical period 

data. In the validation stage, the remaining 

historical period data (25%) is used. The 

LARS-WG model is not a tool for predicting 

climatic or weather conditions, but rather for 

assessing the effects of climate change and 

weather conditions in future decades. 

 

Input Data to the LARS-WG Model 
In this study, data on precipitation, minimum 

temperature, maximum temperature, and 

sunshine hours were used in the base time 

period of 1997-2022. 

 

SSP Scenarios 
One of the limitations of the RCP scenario is 

the lack of a socio-economic narrative of 

expected demographic trends during the 21st 

century. Therefore, in this study, the Shared 

Socioeconomic Pathways (SSPs) scenarios 

were used. These scenarios describe 

narratives related to expected changes during 

the 21st century in relation to socio-economic 

dimensions, climate change, vulnerability, 

and the effectiveness of sustainable policies 

(Jones & O’Neill, 2016). Therefore, it is 

possible to analyze expected demographic 

changes during the 21st century. These 

scenarios are: 

 SSP1 (Sustainability): The first scenario 

is based on a sustainable path in the 21st 

century, aiming to reduce inequality 

between countries and consumption with 

less resource intensity. 



-------- et al., / Environmental Resources Research 14, 1 (2026)                                                                                  86 

 SSP2 (Middle of the Road): This 

scenario differs from historical patterns of 

unequal growth among countries. In this 

scenario, international goals are pursued 

slowly. 

 SSP3 (Regional Rivalry): In this scenario, 

nationalism emerges with policies focused 

on regional basins. Lack of international 

awareness of sustainable goals leads to 

environmental problems in various regions. 

 SSP4 (Inequality): Inequality is increasing 

in various regions of the world. In the 

energy sector, renewable energy sources 

and fossil fuels have been developed. 

 SSP5 (Fossil-Fueled Development): This 

scenario is based on a rapid increase in the 

global economy with increasing 

consumption of fossil fuels. 

 

Evaluation of Data Produced by the Model 

Based on Observational Data 
In order to evaluate the results of the LARS-

WG model, the statistical parameters of the 

coefficient of determination (R2), Root Mean 

Square Error (RMSE), and Nash-Sutcliffe 

Efficiency (NSE) were used, the relationships 

of which are as follows:  
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In the above relationships, Xi is the observed 

data, is the average of the observed data, and 

Yi is the modeled data. 

 

Selection of the Most Compatible GCM 

Model with Observational Data 
In this study, data from 15 new GCM models 

presented in the IPCC Sixth Assessment 

Report were downloaded (their information is 

provided in Table (1). Then, using the 

statistical parameters R2, NRMSE, and NSE, 

the data from the downloaded models were 

compared with the observational data. 

Finally, the CNRM-CM6-1 model was 

selected as the most compatible model with 

the observational data (Table 2). 

Subsequently, using the data from this model, 

the parameters of precipitation, minimum 

temperature, and maximum temperature were 

generated for future periods under the SSP 

scenarios.

 
Table 1. Information of GCM models introduced in the sixth IPCC report used in the present study 

Row Model Country or Union Atmospheric resolution Integration period 

1 ACCESS-ESM1 Australia 1.875° × 1.25° 1997-2022 

2 BCC-CSM2-MR China ~2.8° × 2.8° 1997-2022 

3 CanESM5 Canada ~2.8° × 2.8° 1997-2022 

4 CESM2 Italy 1.875° × ~1.9° 1997-2022 

5 CMCC-ESM2 France ~1.4° × 1.4° 1997-2022 

6 CNRM-CM6-1 France ~1.4° × 1.4° 1997-2022 

7 GFDL-ESM4 USA 1.25° × 1° 1997-2022 

8 GISS-E2-1-G USA 2.5° × 2° 1997-2022 

9 HadGEM3-GC31-LL Russia 2° × 1.5° 1997-2022 

10 INM-CM5-0 France 3.75° × ~1.9° 1997-2022 

11 MIROC6 Japan 2.8125° × ~2.8° 1997-2022 

12 MIROC-ES2L Germany 1.875° × ~2° 1997-2022 

13 MPI-ESM1-2-LR Germany 1.125° × ~1.1° 1997-2022 

14 MRI-ESM2-0 UK 1.875° × 1.25° 1997-2022 

15 TaiESM1 UK 1.9° × 1.3° 1997-2022 

 

Validation of the LARS-WG Model 
Typically, two methods are used to validate 

the LARS-WG model. In the first method, the 

available data is divided into two categories. 

Then, climatic data is generated without 

defining any scenarios, and the validation 

process is performed with the data from the 

second category. In the second method, the 

performance of the *.tst file generated by the 

LARS-WG model can be evaluated using 
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statistical tests such as the F-test, t-student 

test, and Kolmogorov-Smirnov test. Also, the 

mean, standard deviation, and statistical 

distribution of the existing data are examined. 

The Kolmogorov-Smirnov (K-S) test is used 

to evaluate the compatibility of observational 

and generated data series in four cases: 

including the seasonal distribution of wet and 

dry series, the distribution of daily 

precipitation, the distribution of minimum 

temperature, and the distribution of 

maximum temperature. The t-student test is 

used to examine the significance of the 

difference between observational and 

generated time series for the parameters of 

mean monthly precipitation, mean monthly 

daily maximum temperature, and mean 

monthly daily minimum temperature. Finally, 

the F-test is used to examine the monthly 

variance of observed and generated 

precipitation data. 

 

Table 2. Values of various statistical parameters in evaluating the correlation between historical data and 

GCM model data 

Row Model 

Pr Tmax Tmin 

R2 NRMS

E 

NSE R2 NRMS

E 

NSE R2 NRMS

E 

NSE 

1 ACCESS-ESM1 0.65 0.56 0.51 0.98 1.04 0.61 0.97 0.79 0.50 

2 BCC-CSM2-MR 0.13 0.95 -0.44 0.68 0.72 0.51 0.72 1.64 -1.17 

3 CanESM5 0.38 1.16 -1.13 0.71 0.75 0.38 0.82 1.77 -1.55 

4 CESM2 0.16 1.23 -1.39 0.28 0.29 -1.86 0.21 2.53 -4.18 

5 CMCC-ESM2 0.72 0.81 -0.04 0.71 0.75 0.71 0.96 0.70 0.60 

6 CNRM-CM6-1 0.90 0.87 0.68 0.99 1.05 0.64 0.97 0.68 0.63 

7 GFDL-ESM4 0.37 1.57 -2.89 0.67 0.72 0.70 0.96 0.62 0.69 

8 GISS-E2-1-G 0.58 0.55 0.52 0.69 0.73 0.53 0.96 0.76 0.54 

9 HadGEM3-GC31-LL 0.25 0.81 -0.03 0.43 0.46 0.50 0.03 1.01 0.17 

10 INM-CM5-0 0.25 0.81 -0.03 0.43 0.46 0.50 0.03 1.01 0.17 

11 MIROC6 0.82 0.61 0.41 0.61 0.65 0.57 0.96 0.58 0.73 

12 MIROC-ES2L 0.44 0.88 -0.23 0.99 1.05 0.64 0.97 0.82 0.46 

13 MPI-ESM1-2-LR 0.85 0.97 -0.48 1.00 1.06 0.84 0.97 0.79 0.50 

14 MRI-ESM2-0 0.78 0.50 0.61 0.99 1.05 0.95 0.97 0.72 0.58 

15 TaiESM1 0.13 0.90 -0.28 0.43 0.45 0.49 0.04 1.00 0.19 

 
Table 3. Results of Kolomogrov-Smirnov, F-test and t-student tests between observational and generated 

data 

 
Minimum Temperature Maximum Temperature precipitation 

 
K-S t-student F P value K-S F t-student P value K-S F t-student P value 

Jan 0.05 1.45 4.17 1.00 0.01 16.01 -0.35 1.00 0.07 1.17 0.30 1.00 

Feb 0.05 0.44 5.27 1.00 0.05 19.41 0.13 1.00 0.13 1.19 -0.87 0.99 

Mar 0.03 -1.95 4.26 1.00 0.05 19.05 -0.45 1.00 0.07 1.09 -0.29 1.00 

Apr 0.05 -0.12 2.18 1.00 0.05 42.64 0.21 1.00 0.07 1.41 0.27 1.00 

May 0.05 -0.66 7.16 1.00 0.03 26.56 -0.57 1.00 0.07 1.51 -1.76 1.00 

Jun 0.05 -1.54 17.40 1.00 0.05 10.92 0.40 1.00 0.09 1.74 1.23 1.00 

Jul 0.05 -0.20 9.28 1.00 0.11 12.56 0.77 1.00 0.61 6.75 -1.78 0.88 

Aug 0.05 1.02 9.28 1.00 0.05 20.32 0.04 1.00 0.33 9.26 -1.78 0.80 

Sep 0.03 -0.34 8.80 1.00 0.05 24.04 -0.39 1.00 0.61 5.42 -2.06 0.64 

Oct 0.11 0.24 9.89 1.00 0.03 30.24 -0.24 1.00 0.06 3.65 -2.06 1.00 

Nov 0.05 -0.01 6.63 1.00 0.05 17.94 -0.46 1.00 0.07 1.95 -1.76 1.00 

Dec 0.03 -0.54 5.61 1.00 0.05 5.66 -0.63 1.00 0.06 1.04 -0.70 1.00 

 

Results and Discussion 

Model Validation in Simulating 

Precipitation and Temperature Variables 

Figure 4 shows the average of the observed 

and simulated precipitation and average 

temperature data. As can be seen, the 
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difference between the observed data and the 

data simulated by the LARS-WG model is 

very small, which proves the high accuracy 

and ability of the LARS-WG model in 

downscaling precipitation and temperature 

parameters. Therefore, the mentioned data 

can be used to simulate precipitation and 

temperature variables in long-term future 

time intervals under the influence of climate 

change scenarios. 

 
 

Figure 4. Comparison of observational and modeled values on a monthly scale 

 
Monthly Results of Forecasting 

Meteorological Parameters in Future 

Scenarios 
After validating the LARS-WG model, the 

minimum temperature, maximum 

temperature, and precipitation data at the 

Aleshtar station were predicted for the two 

time periods of 2031-2050 and 2051-2070 

AD for the SSP126, SSP245, and SSP585 

scenarios using the data from the CNRM-

CM6-1 model. The monthly results of 

forecasting the mentioned parameters are 
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shown in Figure 5. According to this figure, it 

is observed that monthly precipitation in 

future periods compared to the base period 

has an increasing trend in the months of 

January to April and October to December, 

with the highest increase in the months of 

February and 

December. 

 

 
 

 

 
Figure 5. Comparison of monthly fluctuations of meteorological parameters of Al-Shater  

station in future time periods compared to the base period 

 
The minimum temperature in the future 

period compared to the base period has a 

decreasing trend. The lowest temperature 

decrease is observed in the SSP126 scenario, 

and the highest decrease is observed in the 

SSP585 scenario. Regarding precipitation, 
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the amount of precipitation in the future 

period compared to the base period shows an 

increasing trend in the SSP126 scenario and a 

decreasing trend in the SSP585 scenario. The 

amount of changes in the minimum 

temperature, maximum temperature, and 

precipitation parameters for the two future 

periods compared to the base period are 

shown in Tables 4 to 6. In general, in the 

SSP126 scenario, compared to the base 

period, the minimum temperature and 

precipitation decrease, and the maximum 

temperature increases. The highest increase 

in precipitation is estimated in the month of 

June for the SSP126 scenario, and the lowest 

increase is estimated in the month of 

November for the SSP585 scenario. The 

lowest minimum temperature is also 

predicted in the SSP126 scenario, and the 

highest minimum temperature is predicted in 

the SSP585 scenario. Regarding the 

maximum temperature, the lowest and 

highest temperature fluctuations were 

predicted in the SSP126 and SSP585 

scenarios, respectively. 

 
Table 4. Precipitation fluctuations in future periods compared to the base period in climate scenarios 

(percentage) 

 2031-2050 2051-2070 

 SSP126 SSP245 SSP585 SSP126 SSP245 SSP585 

Jan 14.42 2.92 7.64 5.57 13.28 14.50 

Feb 31.52 27.95 28.13 29.67 37.71 33.70 

Mar -6.67 -8.39 -5.59 -6.50 -7.21 0.08 

Apr -10.79 -10.25 -1.31 -15.06 -16.08 -8.44 

May 41.99 39.09 47.19 33.47 31.62 36.96 

Jun 85.57 83.63 86.70 81.27 80.61 83.64 

Jul 29.55 21.81 37.58 23.49 12.15 29.55 

Aug -3.02 -10.23 3.31 3.31 -7.02 3.31 

Sep 84.26 82.26 84.39 84.93 84.75 84.85 

Oct -11.39 -14.09 -31.98 -29.03 -47.27 -11.91 

Nov -18.11 -17.99 -35.82 -33.20 -60.47 -11.62 

Dec 37.05 30.71 32.70 30.26 24.48 40.46 

 

Table 5. Minimum temperature fluctuations in future periods compared to the base period in climate 

scenarios (percentage) 

 2031-2050 2051-2070 

 SSP126 SSP245 SSP585 SSP126 SSP245 SSP585 

Jan -292.83 -270.61 -262.75 -265.16 -245.23 -205.65 

Feb -121.10 -117.01 -106.42 -107.61 -98.01 -87.76 

Mar -77.28 -77.33 -69.84 -69.40 -64.77 -60.85 

Apr -55.11 -55.60 -52.32 -52.25 -48.36 -45.26 

May -52.85 -53.15 -51.92 -52.07 -47.32 -44.76 

Jun -51.09 -50.39 -49.88 -48.66 -44.00 -42.47 

Jul -42.98 -42.24 -41.50 -39.33 -35.74 -34.52 

Aug -41.76 -41.59 -40.05 -38.48 -35.48 -33.17 

Sep -51.22 -50.71 -49.08 -48.13 -43.94 -39.45 

Oct -58.26 -56.76 -55.68 -54.44 -48.33 -41.41 

Nov -76.10 -72.41 -70.91 -68.60 -60.03 -47.82 

Dec -140.61 -131.07 -128.19 -125.86 -115.38 -91.97 

 

Table 6. Maximum temperature fluctuations in future periods compared to the base period in climate 

scenarios (percentage) 

 2031-2050 2051-2070 

 SSP126 SSP245 SSP585 SSP126 SSP245 SSP585 

Jan 15.85 20.62 25.37 23.83 28.99 36.14 

Feb 21.94 21.45 29.47 27.30 29.99 34.37 

Mar 19.61 18.30 23.48 24.31 26.14 28.72 

Apr 16.17 14.94 16.44 18.40 20.95 23.23 

May 13.97 13.33 13.10 15.15 18.55 20.03 

Jun 9.11 9.88 9.64 12.22 15.35 15.82 

Jul 9.90 10.88 11.33 14.24 16.49 17.04 
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Aug 11.42 11.60 12.94 14.73 16.31 18.25 

Sep 10.71 11.26 12.33 13.69 15.65 18.66 

Oct 12.69 13.85 15.07 16.51 20.02 23.97 

Nov 14.71 17.39 19.78 20.89 27.30 31.49 

Dec 12.17 16.77 19.44 19.88 26.29 31.53 

 

Figure 6 displays monthly box plots 

comparing the examined climate scenarios. 

The box plots reveal distinct differences 

between various climate scenarios. In the 

SSP1-2.6 scenario, representing a stable, low-

carbon pathway, the data distribution is more 

concentrated with a smaller interquartile 

range (IQR), indicating less variability in 

precipitation patterns. In contrast, the SSP5-

8.5 scenario, considered a high-carbon and 

more pessimistic pathway, not only shows a 

lower median but also exhibits a wider IQR 

and more outliers. These characteristics 

suggest more intense climate fluctuations and 

an increased likelihood of extreme events 

such as heavy rainfall or prolonged drought 

periods 

under this scenario. 

From a statistical perspective, non-parametric 

tests like the Mann-Whitney U test confirm 

significant differences between the scenarios. 

Specifically, comparing the extreme 

scenarios (SSP1-2.6 versus SSP5-8.5) reveals 

not only a decrease in average precipitation 

but also a noticeable increase in climate 

system instability. These findings are crucial 

for water resource management and 

environmental planning, highlighting the 

urgent need to reduce greenhouse gas 

emissions. The results clearly demonstrate 

that choosing low-carbon development 

pathways can lead to greater climate system 

stability and reduced risks associated with 

extreme events. 

 
 

Figure 6. Combined box plot of the scenarios studied 

 
Seasonal Results of Forecasting 

Meteorological Parameters in Future 

Scenarios 
The seasonal results of forecasting the 

minimum temperature, maximum 

temperature, and precipitation parameters of 

the Aleshtar station in future periods under 

the SSP scenarios are presented in Figure 7. It 

is observed that the highest seasonal 

minimum temperature is estimated in the 

summer season under the SSP585 scenario, 

and the lowest minimum temperature is 

estimated in the winter season under the 

SSP126 scenario. The highest maximum 

temperature is also estimated in the summer 

season under the SSP585 scenario, and the 

lowest maximum temperature is estimated in 

the winter season under the SSP126 scenario. 

In addition, the highest precipitation is 

estimated in the spring season under the 
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SSP126 scenario, and the lowest precipitation 

is estimated in the summer season under the 

SSP585 scenario. 

 

 
 

 
 

 

  
Figure 7. Seasonal results of modeling meteorological parameters in  

future periods under SSP scenarios 

 
Conclusion 
This study employed the CanESM5.0 climate 

prediction model from the Sixth Assessment 

Report (CMIP6) to investigate the impacts of 

climate change on temperature and 

precipitation variables recorded at 

the AleshtarSynoptic Station in Lorestan 

Province, Iran. Using baseline data from 1997-

2022, the research projected future climate 

conditions under three emission scenarios: 
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the optimistic SSP1-2.6, intermediate SSP2-

4.5, and pessimistic SSP5-8.5, examining two 

future 25-year periods: near-term (2031-

2050) and mid-term (2051-2070). The model 

performance analysis revealed that 

while CanESM5.0 accurately 

simulates maximum and minimum 

temperature parameters, it demonstrates higher 

errors in precipitation simulation. Key findings 

include: Under the SSP1-2.6 

scenario, minimum temperature and 

precipitation show decreasing trends compared 

to the baseline period, while maximum 

temperature increases. Simulated temperatures 

under SSP1-2.6 exhibit an increasing 

trend during June to October in both future 

periods. Precipitation demonstrates 

an increasing trend from January to 

June and October to December in future 

periods. Seasonal analysis indicates rising 

temperatures in spring and summer, 

with increased precipitation in autumn and 

winter. These findings provide reliable 

scientific evidence to support climate change 

adaptation and mitigation strategies, serving as 

a valuable resource for policymakers, 

organizations, and the scientific community in 

making informed decisions to address climate 

change impacts.
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