

Proof

Environmental Resources Research (ERR)

Print ISSN: 2783-4832

Online ISSN: 2783-4670

Exploring Main drivers of ecological culture of stakeholders in semiarid ecosystems

Article Info

Article type:
Research Article

Article history:
Received:
Accepted:

Corresponding author:

Keywords:
Arid land conservation
Urbanization
Structural equation model
Ecological culture

Abstract

Stakeholders' hot spots for conservation are crucial for preserving current arid ecosystems and halting the projected trend of habitat loss. In managing arid environments, stakeholder culture for ecosystem conservation has received little attention. The aim of this study was to assess ecological culture and its main drivers in the context of dry ecosystem conservation. Cultural indicators were used to map ecological culture in study region. Questionnaires were used to collect data. Results showed that forests were among the most important land covers in terms of ecological culture ($p<0.05$). Using PCA, the most important drivers affecting ecological culture were identified, and then the contribution of each driver to ecological culture was identified using structural equation model (SEM). The results showed that in total, the direct and indirect relationships of urbanization ($p<0.001$) and agriculture ($p<0.01$) negatively and climate ($p<0.01$), topography ($p<0.01$) and income ($p<0.01$) positively affected ecological culture. Results in this study can be used by policymakers to identify social hotspots where people-led landscape conservation could be feasible with controlling main drivers.

Cite this article: 2026. Exploring Main drivers of ecological culture of stakeholders in semiarid ecosystems. *Environmental Resources Research*, 14(1), 69-80.

© The author(s)

Publisher: Gorgan University of Agricultural Sciences and Natural Resources

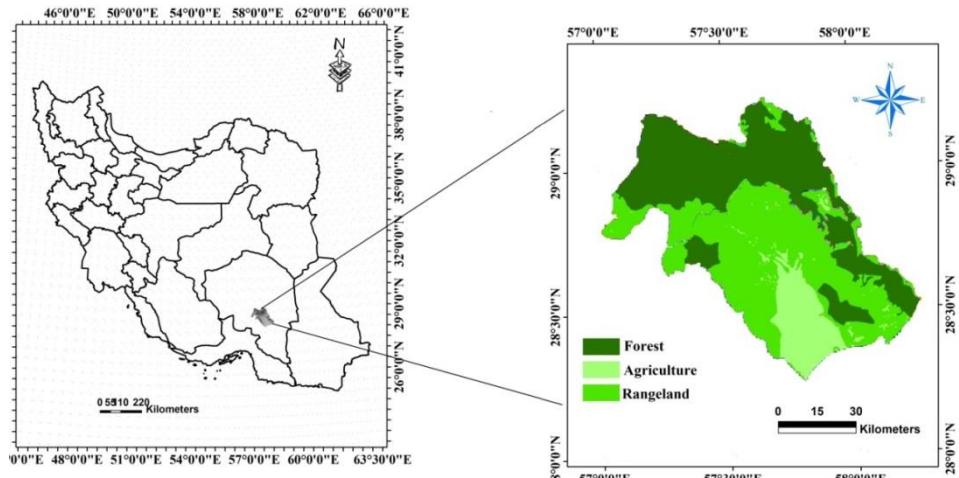
Introduction

The equilibrium between people and the natural world constitutes the foundation of sustainable development for both people societies and ecosystems (Houng and Houng, 2018). Numerous ancient civilizations and governing bodies encountered failures in ecosystem management due to their inability to establish a harmonious balance between anthropogenic activities and natural ecology (Degroot et al., 2021). The interplay between social systems and ecosystems has emerged as a pivotal focus of inquiry within the domains of ecology and sustainability science in recent years (Steffen et al., 2020). Social responsibility towards natural ecosystems represents a relatively novel approach that has been proposed to enhance the health of these ecosystems (Liu et al., 2022). Environmental dilemmas invariably manifest as social challenges. Should people beings and entire societies amend their current detrimental practices, the resolution of environmental issues is plausible (Kinzig et al., 2013). People beings conserve nature in accordance with the values they ascribe to the environment. These values are instrumental in shaping our intrinsic motivations, which are influenced by societal culture (Lillehammer, 2017). Ecological culture is conceptualized as a form of expression concerning material and spiritual values that arise from people creativity, thereby reflecting a state of harmony with nature (Houng and Houng, 2018).

Culture is conceptualized as the quintessence of the people intellect, emerging from the arduous people endeavor against two formidable forces, specifically time and nature, which serves as a testament to people's resilience in surmounting various challenges and adversities in life and sustenance to attain salvation and contentment (Sayago, 2023). According to Salehi (2022) showed that among the components of ecological culture, awareness of the severity of the risk had the greatest impact on the ability to protect the rural community. Structural modeling has also confirmed the impact of ecological culture on the village's environmental protection capacity. Goolmeer and Costello (2024)

showed that indigenous peoples around the world are actively seeking to better understand plants and animals that are of high cultural significance. Participatory management of cultural institutions plays an important role in the conservation of biodiversity, as well as the health and well-being of indigenous peoples. Sima et al. (2024) examined the socio-cultural values provided by coastal ecosystems using the perspectives of tourists. The results of the study of the ecological culture of visitors indicate a high emotional attachment of beach visitors and concern for the preservation of coastal areas and the protection of the place. Tourists suggested various management options to better protect coastal areas and promote sustainable tourism without compromising the uniqueness of the space.

Since, local knowledge and the experiential wisdom of individuals are crucial for comprehending the intrinsic value of landscapes, neglecting to integrate local and indigenous knowledge in landscape-related decision-making results in the erosion of the social significance of the existential and cultural contributions of landscapes (Chebus, 2018;). The socio-cultural context, age, and the interaction of local communities with their surrounding natural resources significantly impact the accumulation of indigenous knowledge (Alsaleh, 2024). Notwithstanding the critical importance of indigenous knowledge in ecological conservation, as well as in the provision of food, medicine, and other indigenous resources, such knowledge is infrequently acknowledged in ecosystem management endeavors (Singh, 2007), and the conservation policies and technologies devised are typically executed without recognizing indigenous knowledge or the involvement of local populations and their traditional institutions (Tran et al., 2020). Consequently, management strategies seldom play a pivotal role in safeguarding and fostering local knowledge for ecosystem conservation (particularly among younger generations) and enhancing people livelihoods (Li et al., 2024b). There are very limited studies investigating the motivation of


indigenous people to protect ecosystems in Iran. Given the urgent and ongoing need for biodiversity conservation and recognition of local role in ecosystem conservation, this study is aimed to delineate the spatial distribution of ecological culture of stockholders and to identify the principal drivers of ecological culture of stockholders.

Methods and Materials

Study area

The study area is Jiroft basin located in Kerman province in southeastern Iran ($56^{\circ} 50'$ to $58^{\circ} 20'$ E and $28^{\circ} 10'$ to $29^{\circ} 15'$ N). The area of this region is about 864,428 ha and includes diverse landscapes from

mountains in the north to flat plains in the south. The region receives an average annual rainfall of 290 mm, most of which falls in the winter. The region is located between the Irano-Turanian and Indus-Saharan phytocoria. As a result, it has a rich flora consisting of several communities and different vegetation. The most important land covers include rangelands, forests, and agricultural lands (Figure 1). Jiroft basin has a long cultural history. From an archaeological perspective, the "Jiroft civilization" or "Halilrud civilization" refers to a cultural complex that existed in the third millennium BC in the south of Kerman province (Madjidzadeh and Pittman, 2008; Eskandari et al., 2019).

Figure 1. Map of land covers of study region

Data Collection

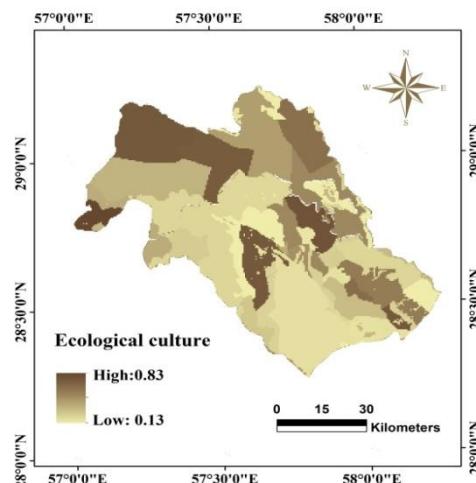
Ecological culture

Local stakeholders in the Jiroft Basin settlements made up our research population. Based on Cochran's method (1997), a sample size of 185 individuals was selected from 15 villages using non-proportional quota sampling (Tashakkori and Teddlie, 2003). A conventional questionnaire and in-person interviews were used to gather data. To make sure that respondents' views of the questions were the same, the reliability of the questionnaire was assessed using the Cronbach's alpha coefficient. There were two primary sections of the questionnaire. Questions about the respondents' age, gender, experience of exploitation, and educational attainment were included in the first section.

Questions about ecological cultural variables were added in the second section. A five-point Likert scale, ranging from 1 (strongly disagree) to 5 (strongly agree), was used to evaluate each variable in the second section. Abedi-Sarvestani and Shahvali (2008), Karimi and Amir Saghaleini (2021), Hossain and Lamb (2020), Huong and Huong (2018), and other prior research were consulted while determining the indicators for each criterion (Table 1). Ecological culture was measured as the average of standardized indicators (ranging from 0 to 1). Using Arc GIS (Hernandez-Stefanoni and Ponce-Hernandez, 2006) and GS+ (Gamma design software Version 5.1.1, 2001), the spatial distribution of ecological culture in the basin was mapped using ordinary kriging interpolation.

Table 1. Indicators of ecological culture

Indicators	References
Waste from households is not discharged into the environment.	(Barr, 2003)
Save maximum resources in building and use energy source in nature	(Huong and Huong, 2018)
Makes sustainable environment demand more effort in the future	(Huong and Huong, 2018)
People is responsible only toward some alive beings	(Abedi-Sarvestani and Shahvali, 2008)
There are sufficient resources and time to conserve ecosystems	(Karimi and Amir Saghaleini, 2021)
People is responsible toward s God's creations	(Abedi-Sarvestani and Shahvali, 2008)


Data Analysis

Kolmogorov-Smirnov normality test was used to check data for normal distribution. Principal Component Analysis (PCA) was used to reveal the most important drivers of ecological culture. The most important variables can be selected based on the significant loading factors of each PC axis (Curz-Cardenas et al., 2014). The Structural Equation Model (SEM) was utilized to evaluate both the direct and indirect determinants influencing habitat quality and ecological culture. SEM represents a statistical approach that integrates regression analysis with confirmatory factor analysis and has progressively become a favored method for elucidating the intricate relationships among components of ecosystems (Awang et al., 2015). Composite reliability (CR) and average variance extracted (AVE) were employed to assess the reliability and validity of the SEM, utilizing SmartPLS v2 (Bido et al., 2014).

Furthermore, Analysis of Variance (ANOVA) and the Least Significant Difference (LSD) test were applied to compare land cover characteristics in relation to ecological culture.

Results

55% of respondents were male and 59% were adults. 29% had low incomes, 65% had lived in the area for more than 10 years, 15% had low income dependence on ecosystems, and 51% had moderate social activity (Table 2). The minimum ecological culture is 0.13 and the maximum ecological culture is 0.83 in the Jiroft basin. LSD analysis showed that forests had the highest ecological culture value with a mean of 0.516 ± 0.125 . Rangelands were in second place with a mean of 0.439 ± 0.113 , and the lowest ecological culture value belonged to agricultural lands with a mean of 0.324 ± 0.107 (Table 3). Significant drivers of ecological culture was determined using PCA (Table 4).

Figure 2. Map of ecological culture in study region

Table 2. Socio-economic characteristics of respondents

Characteristics		Frequency	Percent
Gender	Female	83	45
	Male	102	55
Age (year)	Young	76	41
	Adult	109	59
Education	Less than high school	43	23
	High school	49	27
	Bachelor	56	30
	Master or doctorate	37	20
Annual income	Low	53	29
	Middle	87	47
	High	45	24
Land tenure	Private	79	43
	Public	106	57
Duration of residence (year)	<1	23	12
	1-10	43	23
	10-30	84	45
	30<	35	20
Income dependency on ecosystems	Low	27	15
	Middle	75	40
	High	83	45
Social activity	Low	42	23
	Middle	96	51
	High	47	26

Table 3. Analysis of Variance results and Least Significant Difference test results among land covers in terms of ecological culture

Land covers	Cultural diversity	
	Average	SD
Rangeland	0.439b	0.113
Forest	0.516c	0.125
Agriculture	0.324a	0.107
F	5.12**	

Table 4. The contribution of ecological culture's drivers using two first axes of PCA

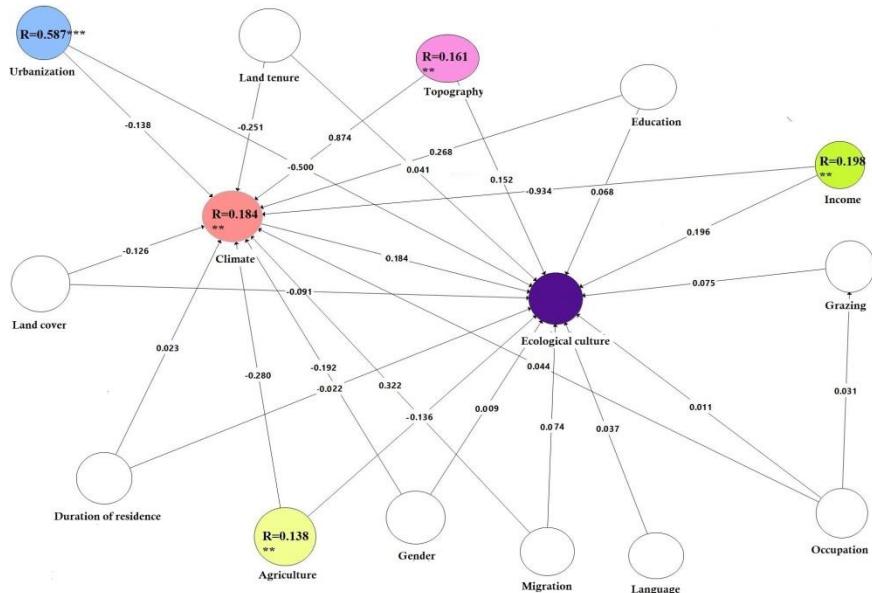

Variable	PCA1	PCA2
Age	0.123	0.052
Agriculture	0.215*	-0.123
Climate	-0.352**	-0.162
Duration of residence	0.132	0.211*
Education	0.261	0.128
Gender	0.135	0.281*
Grazing	0.052	-0.265*
Health	-0.144	0.032
Immigration	0.132	-0.035
Income	-0.038	0.356**
Income dependency to ecosystems	0.156	0.112
Land covers	0.274*	0.112
Landscape	-0.025	0.135
Language	0.218*	-0.145
Land tenure	0.205*	0.025
Occupation	0.103	-0.215*
Ownership	-0.112	0.169
Population	0.137	0.033
Migration	-0.023	-0.237*
Social network	0.018	0.163
Topography	0.265*	-0.041
Urbanization	-0.368**	0.155

Table 5. Composite reliability (CR) and convergent validity (AVE) of impacts of ecological and social characters on ecological culture (AVE >0.5, CR>0.7)

Criteria	Ecological culture	
	AVE	CR
Climate	0.745	0.827
Land cover	0.718	0.835
Agriculture	0.792	0.837
Language	0.825	0.844
Land tenure	0.784	0.912
Topography	0.738	0.927
Urbanization	0.685	0.927
Grazing	0.812	0.933
Gender	0.745	0.957
Income	0.812	0.957
Education	0.892	0.958
Duration of residence	0.782	0.961
Ecological culture	0.827	0.967
Migration	0.628	0.974
Occupation	0.795	0.987

For the reliability and validity of the SEM model, two CR and AVE indices were used (Table 5). For both habitat quality and ecological culture models, all model variables had AVE greater than 0.5 and CR greater than 0.7. Also, the CR value was higher than the AVE value, which indicates the validity of the two models of habitat quality and ecological culture. Figure 6 shows the direct

and indirect relationships of ecological and social variables on ecological culture, which in total, the direct and indirect relationships of urbanization ($p<0.001$) and agriculture ($p<0.01$) negatively and climate ($p<0.01$), topography ($p<0.01$) and income ($p<0.01$) positively affected ecological culture (Figure 3).

Figure 3. Structural equation modeling (SEM) examining impacts of ecological and social characters on ecological culture

Discussion

Mapping ecological culture

Additionally, the distribution of ecological culture was not uniform throughout the

research area. The areas north and west of the Jiroft basin have the highest ecological culture. According to a previous study, culture is not evenly distributed, and the

distribution of cultural heritage in southwest China was most affected by natural factors like the percentage of mountainous areas, river density, and average annual sunshine, as well as human factors like urbanization rates (Li et al., 2024a). 15% of our region had high ecological culture, which was primarily found in highlands and forests, which are important places for social protection because ecological culture can increase the resilience of social systems (Harmon, 2002). Preserving ecological culture and indigenous knowledge in the future will increase the ability of social systems to adapt to future environmental and management changes (Ingelbrecht, 2024). According to our research, 50% of the area had a low ecological culture, which requires promotion. The setting in which cultural traits emerge influences their development to some extent. Climate is one of the elements influencing ecological culture, as the environment or weather has an impact on some situations of population growth or decline, migration, and cultural transmission (Hsiang et al., 2013). Additionally, 41% of the area has poor habitat quality. Overall, our findings demonstrated that ecological culture loss is more vulnerable to dangers than habitat quality. According to Oliveira et al. (2019), ecological culture is dynamic and subject to change. Nowadays, culture is viewed in cultural sociology as an ongoing dynamic process that not only exists but also evolves throughout time. To preserve and improve ecosystem use's distinctiveness and sustainability, future management strategies must give greater consideration to the utilization of these cultural resources (Ingelbrecht, 2024). The improvement of human systems in response to environmental changes is necessary to maintain ecological culture. Integrated social-environmental management is necessary to enhance cultural development plans and initiatives in rural areas. New cultural planning requires a fresh perspective on rural society's cultural problems, fighting social injustice, preventing habitat degradation, fostering local identity, promoting traditional culture, empowering villagers through their involvement, democratic support for cultural policies, a deeper comprehension of the populace, etc.

Threats to ecological culture

Our study's findings clarified the detrimental effects of urbanization on ecological culture. Numerous researches have shown that urbanization negatively impacts indigenous epistemologies in terms of cultural aspects (Gaoe et al., 2017; Ferreira-Júnior et al., 2016; Rangel et al., 2024). Our results showed that one of the favorable factors affecting ecological culture was economic status. For food security and income creation, rural populations are more dependent on habitat quality (Cordero et al., 2020). They have maintained a significant amount of ecological knowledge and have a deeper grasp of their surroundings. Rural residents believe that areas with higher habitat quality are associated with higher quality of life (Rangel et al., 2024). As a result, these areas were found to have the strongest ecological awareness and cultural ties. Additionally, people are more likely to interact with gardens and green areas in metropolitan areas (Peroni et al., 2016; Ávila et al., 2017). Prior studies have demonstrated that city people are less likely to engage with nature (da Cunha Ávila et al., 2015; Arjona-García et al., 2021), especially younger populations with less knowledge (Sousa et al., 2022).

. By eliminating ecosystem-based livelihoods and the indigenous knowledge that underpins them, urbanization's commercialization of resources and diversification of livelihoods endangers ecological culture (Fu et al., 2023). The adoption of new commercial resources in a region or the desire for a consumer lifestyle could be the cause of these changes (Wang and Zhang, 2024). Therefore, it is best to avoid creating urbanization policies that hinder cultural integration (Shao et al., 2024). By developing policies that promote the incorporation of cultural elements into urban development, government policy frameworks and incentives can play a crucial role (Wang and Zhang, 2024). This could include financing for studies into sustainable methods that respect cultural traditions, rules protecting historic locations, and financial incentives for developers that use traditional aspects in their designs.

Conclusions

One of the issues facing sustainable landscape conservation is the trade-off of several ecological and societal factors. Urbanization, a harmful human activity, posed the most threat to landscape conservation's goal of preserving the interaction between humans and nature. Cities in developing nations will continue to grow, and new socioeconomic circumstances should be taken into account based on the needs of the populace. Carefully adjusting a variety of cultural values in connection to habitat quality to new socioeconomic circumstances should be a part of landscape

conservation programs. Local communities, managers, and conservationists need to be made aware of the relationship between the loss of the natural environment and their cultural practices, as well as how innovative approaches to nature conservation may integrate people's cultures. Results in this study can be used by policymakers to identify social hotspots where people-led landscape conservation could be feasible with controlling main drivers.

Funding declaration

This research was supported by University of Jiroft under the grant number 4813-03-1-312303.

References

Abedi-Sarvestani, A., Shahvali, M., 2008. Environmental ethics: Towards an Islamic perspective, *American –Eurasian Journal of agriculture and Environmental Science*, 3(4): 609-617.

Agize, M., Asfaw, Z., Nemomissa, S., Gebre, T., 2022. Ethnobotany of traditional medicinal plants and associated indigenous knowledge in Dawuro Zone of Southwestern Ethiopia. *J Ethnobiol Ethnomed.*, 18: 18.

Agnoletti, M., Emanueli, F., Corrieri, F., Venturi, M., Santoro, A., 2019. Monitoring traditional rural landscapes. The Case of Italy. *Sustainability*, 11(21): 6107.

Alsaleh, A., 2024. The impact of technological advancement on culture and society. *Sci Rep*, 14: 32140.

Amrahov, V., Rahimli, F., Mirzazadeh, N., Ibrahimova, G., Valizadeh, H., 2023. Satisfying the consumer demand for agricultural products: Possibilities and its prediction. *Scientific Horizons*, 26(7): 160-170.

Arjona-García, C., Blancas, J., Beltrán-Rodríguez, L., López Binnqüist, C., Colín Bahena, H., Moreno-Calles, A.I., Sierra-Huelsz, J.A., López-Medellín, X., 2021. How does urbanization affect perceptions and traditional knowledge of medicinal plants?. *J Ethnobiol Ethnomed*, 17:48.

Ávila, J.V., Mello, A.S., Beretta, M.E., Trevisan, R., Fiaschi, P., Hanazaki, N., 2017. Agrobiodiversity and in situ conservation in quilombola home gardens with different intensities of urbanization. *Acta Botanica Brasilica*, 31(1):1

Awang, Z., Afthanorhan, A., Mohamad, M., Asri, M.A.M., 2015. An evaluation of measurement model for medical tourism research: the confirmatory factor analysis approach. *International Journal of Tourism Policy*, 6(1): 29-45.

Barr, S., 2003. Strategies for Sustainability: Citizens and Responsible Environmental Behavior. *Area*, 35(3): 227-240.

Bernard, R., 1992. Preserving language diversity. *Hum. Organ.* 51:82–89.

Bido, D., da Silva, D., Ringle, C., 2014. Structural equation modeling with the Smartpls. *Brazilian Journal Of Marketing*, 13(2): 56 -73.

Bortolotto, I.M., Amorozo, M.C., Neto, G.G., Oldeland, J., Damasceno G.A., 2015. Knowledge and use of wild edible plants in rural communities along Paraguay River, Pantanal, Brazil. *Journal of Ethnobiology and Ethnomedicine*, 11: 46.

Brehony, P., Tyrrell, P., Kamanga, J., Waruingi, L., Kaelo, D., 2020. Incorporating social-ecological complexities into conservation policy. *Biol Conserv*, 248: 108697.

Brondízio, E., Le Tourneau, F., 2016. Environmental governance for all. *Science*, 352: 1272–1273. <https://doi.org/10.1126/science.aaf5122>

Cademus, R., McLaughlin, D., Abd-Elrahman, A., 2014. Analyzing trade-offs, synergies, and drivers among timber Production, carbon sequestration, and water yield in *Pinus elliotii* Forests in Southeastern USA. *Forests*, 5(6): 1409-1431.

Chebus, P., 2018. Contribution of Indigenous beliefs and practices to sustainable tourism in Baringo, Kenya. *International Journal of Progressive Sciences and Technologies*, 7(2): 164–174.

Chenchouni, H., Merdas, S., Kouba, Y., Mostephaoui, T., Farhi, Y., Neffar, S., 2025. Multiscale partitioning effects of livestock grazing management on plant community composition and diversity in arid rangelands. *Journal of Environmental Management*, 373: 123670.

Clark, E., 2004. The Ballad Dance of the Faeroese: Island Biocultural Geography in an Age of Globalisation. *Journal of Economic and Social Geography*, 95: 284–297.

Cochran, W. G. Sampling techniques. Hoboken, NJ: John Wiley & Sons, Inc. (1997).

Cocks, M.L., Wiersum, F., 2014. Reappraising the Concept of Biocultural Diversity: a Perspective from South Africa. *Hum. Ecol.*, 42: 727–737.

Concepción, E.D., Moretti, M., Altermatt, F., Obrist, M.K., 2015. Impacts of urbanisation on biodiversity: The role of species mobility, degree of specialisation and spatial scale. *OIKOS*. 124: 1571-1582.

Cordero, S., Gálvez, F., Arenas, J., Valenzuela, E.R., 2021. Does access to natural environments explain differences in the use of wild plants between rural and urban populations? *Bot Sci.*, 99:104–23.

Curran, G., Barwick, L., Turpin, M., Walsh, F., Laughren M., 2019. Central Australian Aboriginal songs and biocultural knowledge: Evidence from Women's Ceremonies Relating to Edible Seeds. *J. Ethnobiol.*, 39: 354.

Curz-Cardenas, ' G., Lopez-Mata, ' L., Villasenor, ~ J.L., Ortiz, E., 2014. Potential species distribution modeling and the use of principal component analysis as predictor variables. *Rev. Mex. Biodivers.* 85, 189–199.

da Cunha Ávila, J.V., Zank, S., de Oliveira Valadares, K.M., Maragno, J.M., Hanazaki, N., 2015. The traditional knowledge of Quilombola about plants: does urbanization matter? *Ethnobot Res Appl.* 28(14):453–62.

Dadashpoor, H., Azizi, P., Moghadasi, M., 2019. Land use change, urbanization, and change in landscape pattern in a metropolitan area. *Sci. Total Environ.*, 655: 707-719.

Dai, L., Li, S., Lewis, B.J., Wu, J., Yu, D., Zhou, W., Zhou, L., Wu, S., 2019. The influence of land use change on the spatial-temporal variability of habitat quality between 1990 and 2010 in Northeast China. *J. For. Res.*, 30: 2227–2236.

Davis, L., 2012. Individualism and economic development: Evidence from rainfall data. Manuscript, Union College.

Degroot, D., Anchukaitis, K., Bauch, M., Burnham, J., Carnegie, F., Cui, J., et al. 2021. Towards a rigorous understanding of societal responses to climate change. *Nature*, 591: 539–550.

Díaz, S., Settele, J., Brondízio, E., Ngo, H., Agard, J., Almuth, A., Zayas, C., 2019. Pervasive people-driven decline of life on Earth points to the need for transformative change. *Science*, 366(6471): eaax3100. <https://doi.org/10.1126/science.aax3100>

Erduran, F., Uzun, Q., Çetinkaya, G., Dilek, F., Açıksöz, S., 2012. Determination of the cultural landscape values of Lake Suyla in Turkey. *Journal of Food, Agriculture and Environment*, 10: 949-955.

Eskandari, N., Dasset, F., Maritan, L., Cherubini, A., Vidale, M., 2019. Multimaterials sequential casting and a Bronze Age “royal sceptre” from the Halil Rud valley (Kerman, Iran)”, IRAN, pp.1-15.

Fernández-Llamazares, Á., Cabeza M., 2018. Rediscovering the Potential of Indigenous Storytelling for Conservation Practice. *Conservation Letters*, 11: e12398.

Ferreira-Júnior WS, Santoro FR, Vandebroek I, Albuquerque UP. Urbanization, modernization, and nature knowledge. In: Albuquerque UP, Alves RRN, editors. *Introd. Ethnobiol*: Springer international publishing, Cham, 2016. p. 251–6.

Fishman, J.A., 1982. Whorfianism of the third kind: ethnolinguistic diversity as a worldwide societal asset. *Lang. Soc.* 11:1–14

Fu, L., Zhang, Q., Tang, Y., Pan, J., Li, Q., 2023. Assessment of urbanization impact on cultural heritage based on a risk-based cumulative impact assessment method. *Herit Sci*, 11: 177.

Gaoue, O.G., Coe, M.A., Bond, M., Hart, G., Seyler, B.C., McMillen, H., 2017. Theories and major hypotheses in ethnobotany. *Econ Bot.*, 71: 269–87.

Goolmeer, T., Costello, O., et al. 2024. Indigenous-led designation and management of culturally significant species. *Nat Ecol Evol.*, 8: 1623–1631.

Hernandez-Stefanoni, J.L., Ponce-Hernandez, R., 2006. Mapping the spatial variability of plant diversity in a tropical forest: Comparison of spatial interpolation methods. *Environ Monit Assess*, 117: 307–334

Hossain, B., Lamb, L., 2020. Cultural Attachment and Wellbeing Among Canada's Indigenous People: A Rural Urban Divide. *J Happiness Stud*, 21: 1303–1324.

Hsiang, S.M., Burke, M., Miguel, E., 2013. Quantifying the influence of climate on people conflict. *Science*, 341(6151): 1235367.

Huong, D.Th., Huong, N.Th.T., 2018. Ecological culture and educational issue of ecological culture – motivation for the people development. *American Journal of Educational Research*, 6: 694-702.

Hussain, M., Imitiyaz, I., 2018. Urbanization concepts, dimensions and factors. *Int J Recent Sci Res*, 9:23513–23.

Ingelbrecht, K., Singh, Y., Durgadmath, N., Moieni, R., Lee, N., 2024. Cultural Diversity and Urban Features: An Australian Case Study. *Open Journal of Social Sciences*, 12: 470- 486.

IPBES. 2019. Summary for policymakers of the global assessment report on biodiversity and ecosystem services (S. Díaz, J. Settele, E. Brondízio, H. Ngo, M. Guéze, J. Agard, ... C. Zayas, Eds.). Bonn, Germany: IPBES Secretariat.

Jawarneh, R.N., Abulibdeh, A., Hashem, N., Awawdeh, M., Al-Awadhi, T., Abdullah, M.M., El Kenawy, A.M., 2024. Assessing and predicting land cover dynamics for environmental sustainability in Jordan's arid ecosystems using CA-Markov model. *Remote Sensing Applications: Society and Environment*, 35: 101262.

Jupiter, S. 2017. Culture, kastom and conservation in Melanesia: What happens when worldviews collide?. *Pacific Conservation Biology*, 23(2):139–145.

Karimi, A., Tulloch, A.I.T., Brown, G., Hockings, M., 2017. Understanding the effects of different social data on selecting previously conservation areas. *Conserv Biol.*, 31(6):1439-1449.

Karimi, S., Saghaleini, A., 2021. Factors influencing ranchers' intentions to conserve rangelands through an extended theory of planned behavior. *Global Ecology and Conservation*, 26: e01513.

Kinzig, A.P., Ehrlich, P.R., Alston, L.J., Arrow, K., Barrett, S., Buchman, T.G., Daily, G.C., Levin, B., Levin, S., Oppenheimer, M., Ostrom, E., Saari, D., 2013. Social norms and global environmental challenges: The Complex Interaction of Behaviors, Values, and Policy. *Bioscience*, 63(3): 164-175.

Kondratyeva, A., Grandcolas, P., Pavoine, S., 2019. Reconciling the concepts and measures of diversity, rarity and originality in ecology and evolution. *Biol Rev Camb Philos Soc.*, 94(4): 1317-1337.

Kooch, Y., Shah Piri, A., Dianati Tilaki, Gh.A., 2021. Conversion of forest to rangelands suppress soil fauna and flora densities during long-term in mountain ecosystems. *Ecological Engineering*, 165: 106241.

Kumar Gautam, S., 2019. The Role of Indigenous Knowledge in Biodiversity Conservation: Integrating Traditional Practices with Modern Environmental Approaches. *Environmental Reports*, an International Journal. 01 to 03.

Levis, C., Costa, F.R., Bongers, F., Peña-Claros, M., Clement, C.R., Junqueira, A.B., Neves, E.G., Tamanaha, E.K., Figueiredo, F.O., Salomão, R.P., Castilho, C.V., Magnusson, W.E., Phillips, O.L., Guevara, J.E., Sabatier, D., Molino, J.-F., Cárdenas López, D., Monteagudo Mendoza, A., Pitman, N.C., Duque, A., ...ter Steege, H., 2017. Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. *Science*, 355(6328): 925-931.

Levis, C., Flores, B.M., Campos-Silva, J.V. et al. 2024. Contributions of people cultures to biodiversity and ecosystem conservation. *Nat Ecol Evol.*, 8: 866–879.

Levis, C., Flores, B.M., Campos-Silva, J.V., Peroni, N., Staal, A., Padgurschi, M.C.G., Dorshow, W., Moraes, B., Schmidt, M., Kuikuro, T.W., Kuikuro, H., Wauja, K., Kuikuro, K., Kuikuro, A., Fausto, C., Franchetto, B., Watling, J., Lima, H., Heckenberger, M., Clement, C.R., 2024. Contributions of people cultures to biodiversity and ecosystem conservation. *Nat Ecol Evol.*, 8(5): 866-879.

Li, C., Qian, Y., Li, Z. et al. 2024 a. Identifying factors influencing the spatial distribution of minority cultural heritage in Southwest China. *Herit Sci.*, 12: 117.

Li, Y., Abu Bakar, N.A., Ismail, N.A., Mohd Ariffin, N.F., Mundher, R., 2024b. Stakeholder involvement and preferences in landscape protection decision-making: a systematic literature review. *Front. Commun*, 9:1340026.

Lillehammer, H., 2017. The Nature and Ethics of Indifference. *J Ethics*, 21:17–35.

Liu, H., Xing, L., Wang, C., Zhang, H., 2022. Sustainability assessment of coupled people and natural systems from the perspective of the supply and demand of ecosystem services. *Front. Earth Sci.*, 10: 1025787.

Loh, J., Harmon, D., 2005. A global index of biocultural diversity. *Ecological indicators*, 5(3): 231–241.

Lotfi, P., Ahmadi Nadoushan, M., Besalatpour, A., 2023. Cropland abandonment in a shrinking agricultural landscape: patch-level measurement of different cropland fragmentation patterns in Central Iran. *Appl. Geogr.*, 158: 103023.

Madjidzadeh, Y., Pittman, H., 2008. Excavations at Konar Sandal in the Region of Jiroft in the Halil Basin: First Preliminary Report (2002–2008)", *Iran* 46: 69–103.

Maffi, L., 2018. Sustaining biocultural diversity. In Rehg K. L., and Campbell L. (Eds.), *The Oxford Handbook of Endangered Languages*, Oxford Handbooks (online edn). Oxford Academic.

Maffi, L., Woodley, E., 2010. *Biocultural Diversity Conservation: A Global Sourcebook* (1st ed.). Routledge. <https://doi.org/10.4324/9781849774697>

McKey, D., Rostain, S., Iriarte, J., Glaser, B., Birk, J.J., Holst, I., Renard, D., 2010. Pre-Columbian agricultural landscapes, ecosystem engineers, and self-organized patchiness in Amazonia. *Proc. Natl Acad. Sci. USA*, 107: 7823–7828.

Mollee, E., Pouliot, M., McDonald, M.A., 2017. Into the urban wild: Collection of wild urban plants for food and medicine in Kampala, Uganda. *Land Use Policy*, 63: 67–77.

Oliveira, E.S., Albuquerque, U.P., Alves, A.G.C., Ramos, M.A., 2019. Is local ecological knowledge altered after changes on the way people obtain natural resources? *J Arid Environ.*, 167:74–8.

Parris, K.M., 2016. *Ecology of urban environments*. Wiley Blackwell, Oxford.

Paula, B.M., Oscar, M.N., 2012. Land-use planning based on ecosystem service assessment: A case study in the Southeast Pampas of Argentina. *Agriculture, Ecosystems and Environment*, 154: 34-43.

Peroni, N., Hanazaki, N., Begossi, A., Zuchiwschi, E., Lacerda, V.D., Miranda, T.M., 2016. Homegardens in a micro-regional scale: contributions to agrobiodiversity conservation in an urban-rural context. *Ethnobiol Conserv*. 5:1–17

Perumal, S., Alhameli, H., Alhosani, A. M., Gharib, M.N., 2023. Chapter 15 - An ISM and MICMAC approach for evaluating the barriers hindering the implementation of blockchain technology in supply chains. In K. Mathiyazhagan, V. R. Sreedharan, D. Mathivathanan and V. Sunder M (Eds.), *Blockchain in a Volatile-Uncertain-ComplexAmbiguous World* (pp. 233-249): Elsevier.

Petit, S., Firbank, L., Wyatt, B., Howard, D., 2001. MIRABEL: Models for integrated review and assessment of biodiversity in European landscapes. *AMBIO J. Hum. Environ.*, 30: 81–89.

Pilgrim, S., Smith, D.J., Pretty, J.N., 2007. A cross-regional assessment of the factors affecting ecoliteracy: Implications for policy and practice. *Ecological Applications*, 17(6):1742-51.

Porter-Bolland, L., Ellis, A., M.R., Guariguata, Ruiz-Mallén, I., Negrete-Yankelevich, S., Reyes-García, V., 2012. Community managed forests and forest protected areas: an assessment of their conservation effectiveness across the tropics. *Ecol. Manag.*, 268: 6–17.

Potts, T.F., 1993. Patterns of trade in third millennium BC Mesopotamia and Iran. *World Archaeology*, 24: 379-402.

Rangel, J.M.L., do Nascimento, A.L.B., Ramos, M.A., 2024. The influence of urbanization on local ecological knowledge: a systematic review. *J Ethnobiology Ethnomedicine*, 20: 106.

Reimers, E., Fernández, E.C., Reimers, D., Chaloupkova, P., Del Valle, J., Milella, L., Russo D., 2019. An Ethnobotanical Survey of Medicinal Plants Used in Papantla, Veracruz, Mexico. *Plants* (Basel, Switzerland), 8(8): 246.

Rimlinger, A., Duminil, J., Lemoine, T., Avana, M.L., Chakocha, A., Gakwau, A., Mboujda, F., Tsogo, M., Elias, M., Carrière, S.M., 2021. Shifting perceptions, preferences and practices in the African fruit trade: the case of African plum (*Dacryodes edulis*) in different cultural and urbanization contexts in Cameroon. *J Ethnobiol Ethnomed.*, 17:65.

Ruas, R.B., Costa, L.M.S., Bered, F., 2022. Urbanization driving changes in plant species and communities – A global view. *Global Ecology and Conservation*, 38: e02243.

Saaty, T.L., 1980. *The Analytical Hierarchy Process: Planning Previously Setting Resource Allocation*. New York: Hill Book Co.

Sabati Gavgani, M., Mohammadzamani, D., Gholami Par-Shokohi, M., 2022. Assessment of the factors contributing to the lack of agricultural mechanization in Jiroft, Iran. *Open Agriculture*, 7(1):782-793.

Salehi, S., 2022. A Study of the Role of Ecological Culture in Increasing the Ability of Environmental Protection of Rural Community (Case Study: Villages of Mazandaran Province). *Journal of Environmental Research*, 13: 133-150.

Sayago, S., 2023. The concept of culture: A short and guided overview. In: *Cultures in Human-Computer Interaction. Synthesis Lectures on Human-Centered Informatics*. Springer, Cham.

Seto, K.C., Sánchez-Rodríguez, R., Fragkias, M., 2010. The new geography of contemporary urbanization and the environment. *Annu Rev Environ Resour.*, 5:167–94.

Shao, S., Li, G., Cao, J., 2024. Will cultural diversity block the process of urbanization? —Empirical study from the perspective of dialect. *City Diversity*, 5(1): 1951.

Sharp, R., Douglass, J., Wolny, S., Arkema, K., Bernhardt, J., Bierbower, W., Chaumont, N., Denu, D., Fisher, D., Glowinski, K., Griffin, R., Guannel, G., Guerry, A., Johnson, J., Hamel, P., Kennedy, C., Kim, C. K., Lacayo, M., Wyatt, K., 2020. The natural capital project, stanford university, university of Minnesota, the nature conservancy and world wildlife fund. *InVEST User's Guide*.

Sima, M., Dumitrescu, M., Grigorescu, I., Costache, A., 2024. Tourists' perception of socio-cultural values of ecosystem services and management perspectives at the Vadu wild beach, Danube Delta Biosphere Reserve, Romania. *Ocean & Coastal Management*, 257: 107312.

Simpson, E.H., 1949. Measurement of diversity. *Nature*, 12:1-20.

Singh, R.K., 2007. Community based forest resources management through socio-cultural institutions: dynamics of biodiversity conservation and subsistence living of Aditribes under subtropical ecosystem in eastern Himalayas. In: Paper presented at the international conference on Sustaining communities and development in the face of environmental challenges, 26–28 July, Halifax, Canada, Canadian Society of Ecological Economics

Song, X., Wu, Y., Chen, Y., Wang, L., Yang, D., Zhang, W., Liu, N., 2024. A framework for functional zoning of national parks based on biocultural diversity assessment. *Global Ecology and Conservation*, 51: e02877.

Sousa, B.M., Albuquerque, U.P., Araújo, E.D., 2022. Easy access to biomedicine and knowledge about medicinal plants: a case study in a semiarid region of Brazil. *Evid-Based Complement Altern Med.* (1):5073625.

Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O., Ludwig, C., 2015. The trajectory of the Anthropocene: The great acceleration. *Anthropocene Rev.* 2 (1): 81–98.

Steffen, W., Richardson, K., Rockström, J., Schellnhuber, H.J., Dube, O.P., Duteuil, S., et al. 2020. The emergence and evolution of Earth system science. *Nat. Rev. Earth Environ.*, 1 (1): 54–63.

Sterling, E.J., C. Filardi, J. Newell, S. Albert, D. Alvira, N. Bergamini, E. Betley, M. Blair, D. Boseto, K. Burrows, et al., 2017. Biocultural approaches to well-being and sustainability indicators across scales. *Nature Ecology and Evolution*. 1: 1798–1806.

Sun, X., Jiang, Z., Liu, F., Zhang, D., 2019. Monitoring spatio-temporal dynamics of habitat quality in Nansihu Lake basin, eastern China, from 1980 to 2015. *Ecol. Indic.*, 102: 716–723.

Sutherland, W.J., 2003. Parallel extinction risk and global distribution of languages and species. *Nature*, 423(6937): 276–279.

Tashakkori, A., Teddlie, C., 2003. Handbook of mixed methods sampling in social and behavioral research. Sage Publications, London, UK.

Tran, T.C., Ban, N.C., Bhattacharyya, J., 2020. A review of successes, challenges, and lessons from Indigenous protected and conserved areas. *Biological Conservation*, 241: 108271.

Vahidi, S.M., Tarang, A.R., Naqvi, A.U., Falahati Anbaran, M., Boettcher, P., Joost, S., Colli, L., Garcia, J.F., Ajmone-Marsan, P., 2014. Investigation of the genetic diversity of domestic *Capra hircus* breeds reared within an early goat domestication area in Iran. *Genet. Sel. Evol.*, 17: 27–46.

Vitasović-Kosić, I., Hodak, A., Łuczaj, Ł., Marić, M., Juračak, J., 2022. Traditional Ethnobotanical Knowledge of the Central Lika Region (Continental Croatia)—frst record of edible use of fungus *Taphrina Pruni*. *Plants*, 11:3133.

Wang, Y., Zhang, J., 2024. Research on cultural diversity and sustainable land-use management assessment model. *Front. Environ. Sci.*, 12:1359521.

Zhang, Y., Tariq, A., Hughes, A.C., Hong, D., Wei, F., et al., 2023. Challenges and solutions to biodiversity conservation in arid lands. *Science of The Total Environment*, 857: 159695.