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Abstract 
The purpose of this study was to document changes in indices simulated by the ensemble 
application of Coupled Model Inter-comparison Project CMIP5 and CMIP3 when 
analyzing impacts of climate change on catchment rainfall indices in sub-basins of 
Hamedan province, west of Iran. The analysis of the precipitation indices consisted of 
simple rainfall intensity, very heavy rainfall days, maximum one-day rainfall, and rainfall 
frequency. I investigated the relative change in three rainfall indices based on general 
circulation models (GCMs) under a mixture of greenhouse gas emission scenarios A1B and 
B1, RCP8.5 and RCP8.5 for two future periods 2020–2045 and 2045-2065. Results showed 
that each of the rainfall indices differed in stations under the three GCMs models (GIAOM, 
MIHR, MPEH5) and emission scenarios A1B, B1, RCP2.5, and RCP8.5. Relative 50y 
change  for future periods 2046–2065 varied from -9.93% to 25% for daily intensity index, 
from 20.71% to 25.9% for very heavy rainfall days and from -15.71% to 13% for annual 
rainfall depth in the study area. Rainfall indices projection of sum of wet days, days>1mm, 
and maximum one-day rainfall showed decrease under the scenarios B1 and A1B and also 
sum of wet days, simple daily intensity, and heavy rainfall days>10 decreased under the 
RCP2.6. 
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Introduction 
We can expect strong impact of changes in 
climate and especially in rainfall on 
ecosystems as a whole and their 
components. Diminishing rainfall or 
increasing dry periods can negatively affect 
crop yields. On the other hand, increasing 
downpour, especially during the dry season, 
can have a positive effect on staple crops as 
their cultivation period gets extended. 
CMIP5 or the Coupled Model 
Intercomparison Project Phase 5 offers a 
framework for coordinated climate change 
experiments for the next several years 
based on which we can simulate and assess 
climatic conditions (Taylor et al., 2012). 
CMIP5 focuses on a set of experiments that 
include higher spatial resolution models, 
improved model physics, and a more lavish 
set of output fields (Gulizia and Camilloni, 
2015; Taylor et al., 2012). 

In the CMIP5 climate change 
projections, series of emissions and 
concentrations from the representative 
concentration pathways (RCPs) described 
in Moss et al. (2010) are used. Accordingly, 
general circulation models (GCMs) 
produced based on CMIP5 have been 

widely applied in climate change 
assessment (Gulizia and Camilloni, 2015; 
Pierce et al., 2013; Smith et al., 2013). 
Figure 1 depicts the progress of carbon 
dioxide (CO2) concentrations, as observed 
in the 20th century and prescribed in the 
21st-century simulations in the SRES and 
RCP scenarios used in this study. 

The SRES scenarios are based on the 
storylines that assume various political, 
socioeconomic and technological 
developments causing specified changes in 
emissions that in turn determine the 
resulting   changes in the atmospheric 
greenhouse gas concentrations (e.g., Figure 
1) and radiative forcing. At the end of the 
21st century, the CO2 concentrations can 
reach approximately 840 ppm in the SRES 
A2 scenario, 700 ppm in the A1B scenario, 
and 540 ppm in the B1 scenario which 
assumes the most environmentally friendly 
development pathway. As opposed to the 
SRES scenarios, the radiative forcing 
trajectories in the RCPs are not linked with 
predefined storylines and they can mirror a 
choice of possible combinations of 
economic, technological, demographic, and 
policy developments (Moss et al., 2010). 

  

 
Figure 1. Carbon dioxide (CO2) concentrations in ppm as used in the CMIP3 and CMIP5 historical and 
scenario simulations and available for download at the PCMDI website. The vertical grey area shows the 
reference period (1981– 2000) and the two 20 year periods (2046–2065 and 2081–2100) considered in the 
analysis of future climate change. (J. Sillmann et al., 2016). 

 
The up and down in the RCP2.6 scenario 

is designed to meet the 2°C global average 
warming target compared to pre-industrial 
conditions (van Vuuren et al., 2011a). This 
scenario has a peak in the radiative forcing at 
approximately 3 W/m2 (~400 ppm CO2) 
before 2100 and then falls to 2.6 W/m2 by 

the end of the 21st century (~330 ppm CO2). 
Radiative forcing in the RCP4.5 scenario 
culminates at approximately 4.5 W/m2 
(~540 ppm CO2) in the year 2100 (Thomson 
et al., 2011). RCP4.5 is similar to the SRES 
scenario B1 with similar CO2 
concentrations, and median temperature rises 
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by 2100 according to Rogelj et al. (2012). 
RCP8.5 assumes a high rate of radiative 
forcing augmentation, peaking at 8.5 W/m2 
(~940 ppm CO2) in the year 2100 Riahi et 
al., 2011. 

We cannot directly compare climate 
changes simulated in the CMIP3 and CMIP5 
ensembles as the prescribed forcing agents 
(e.g., CO2 and aerosols) between the SRES 
and RCP scenarios are different (Rogelj et 
al., 2012). So, the models may respond 
differently to a specific radiative forcing due 
to dissimilar model-specific climate 
sensitivities.  

Using the underlying radiative forcing (or 
CO2 concentrations), however we can 
contrast projected changes in the 
precipitation indices and provide an estimate 
of uncertainty of different emission 
scenarios. The occurrence of extreme rainfall 
events is one of the most significant aspects 
of climate. The increase in frequency and 
intensity of extreme rainfall events may 
bring about major impacts on natural and 
man-made systems in terms of increased 
frequency and severity of floods. For many 
regions in the world, the frequency and 
intensity of heavy rainfall events have 
increased over the past 50 years (Frich et al., 
2002; IPCC, 2007). In this regards, it was 
projected that we may have more severe wet 
extremes in many areas where mean rainfall 
were expected to increase, and more severe 
dry extremes in areas where mean rainfall 
were projected to decrease (IPCC 2007). 
This is particularly important for watersheds 
where runoff from extreme rainfall amount 
events causes rising streamflows (Zhang et 
al., 2008; Kwon et al., 2011). However, for 
better disaster management and mitigation, it 
is more important to understand the changes 
in the extremity of weather measures rather 
than the changes in mean pattern. Therefore, 
we require knowing the magnitudes of 
extreme rainfall events over various parts of 
the world and sub-basins in Hamedan 
Province West of Iran are no exception. 
Most studies point to the fact that future 
climate changes may lead to rises in climate 
variability and the frequency and intensity of 
extreme events. Various researchers 
investigated the frequency and magnitude of 
extreme rainfall, both at global and at 

regional scales under the enhanced 
greenhouse conditions (e.g., Palmer and Ra 
is a ¨nen, 2002; Watterson and Dix, 2003; 
Meehl et al., 2005). Many GCMs results 
consistently predict increases in the 
frequency and magnitudes of extreme 
climate events and unevenness of rainfall 
(IPCC, 2007). Rutger Dankers & Roland 
Hiederer (2008) showed that on rainy days, 
the intensity and variability of the 
precipitation undergoes a general rise, even 
in areas that are getting much drier on 
average.  

Guhathakurta (2011) showed the 
frequency of heavy downpour events is 
decreasing in significant parts of central and 
north India while they are increasing in 
peninsular, east and, northeast India. He also 
demonstrated that extreme rainfall and flood 
risk are increasing significantly in the 
country except for some parts of central 
India. Nazaripouya et al. (2016) evaluated 
the uncertainties of climate change impacts 
on temperature, rainfall and runoff in the 
Ekbatan Dam watershed by CMIP3 models 
for the 2045-2065 period.  

Andreas Haensler et al. (2013) assessed   
the CMIP3 and CMIP5 databases, along 
with some recently downscaled regional 
CORDEX Africa projections and concluded 
that independent of the underlying emission 
scenario, annual total rainfall amounts over 
the central African region are not likely to 
change severely in the future. Also, they 
projected that some robust changes would 
happen in rainfall features such as the 
intensification of heavy rainfall events and  
increase in the number of dry spells during 
the rainy season. 

Seree Supharatid et al. (2015) studied 
CMIP3-CMIP5 climate models rainfall 
projection and implication of flood 
vulnerability for Bangkok and concluded 
that the multi-model mean shows continuous 
rise in the rainfall from the near future to the 
far future while the multi-model median 
shows bigger rainfall only for the distant 
future. 

Saeed et al. (2013) studied the reasons for 
the opposite climate change signals in 
rainfall between the regional climate model 
REMO and its driving earth system model 
MPI-ESM over the greater Congo region. 



90                                                                        H. Nazaripouya / Environmental Resources Research 7, 2 (2019) 

Three REMO simulations following three 
RCP scenarios (RCP 2.6, RCP 4.5 and RCP 
8.5) were conducted, and they found 
opposite signals with REMO showing a 
decrease and an increase with MPI-ESM in 
the future rainfall, which diverged strongly 
from a less extreme to a more extreme 
scenario. Zhouet et al. (2014) projected 
changes in temperature and precipitation 
extremes in China for the end of the twenty-
first century based on CMIP5 simulations. 
The temporal changes and their spatial 
patterns were analyzed in the Expert Team 
on Climate Change Detection and Indices 
(ETCCDI) indices under the RCP4.5 and 
RCP8.5 emission scenarios. They projected 
substantial changes in temperature and 
precipitation extremes under both emission 
scenarios as compared to the reference 
period 1986–2005. 

Anil Acharya (2013) demonstrated that 
the cumulative annual rainfall for every 30 
years shows a nonstop reduction from 2011 
to 2099; however, the summer convective 
storms which are considered as extreme 
storms are expected to be more intense in 
future. 

Ray et al. (2000) conducted a trend 
analysis of heavy rainfall events over 
selected stations all over India and reported a 
diminishing trend over most parts of the 
country. In some other studies, the extreme 
precipitation projections have shown the 
highest rise in the rainfall intensity for the 
most intense storms (i.e., extreme short-
duration storms) (Ra insane and Joelsson, 
2001; Buonomo et al., 2007). 
Pourtouiserkani et al. (2014) studied climate 
change impact on the extreme rainfall for 
Chenar-Rahdar basin, Fars, Iran using two 
AOGCM model outputs (HadCM3 and 
CGCM3) which were  downscaled from 
monthly to daily for the future period of the 
2020s (2011-2040) using statistical 
downscaling techniques including change 
factor, LARS-WG, SDSM, and, weather 
generator stochastic methods. Based on the 
downscaled rainfall time series, the 
maximum 24-hour precipitation for the two 
AOGCM models was extracted and then 
frequency analyses were performed to obtain 
future daily rainfalls with different return 
periods. When the three downscaling 

techniques were compared, the researchers 
found that change factor and LARS-WG 
methods were conservative enough for 
climate change impact assessment for the 
next 30 years. 

Yue-Ping Xu et al. (2012) examined the 
likely impact of climate change on extreme 
rainfall in the Qiantang River Basin for three 
future periods 2011–2030, 2045-2065 and 
2080–2099. They also assessed the 
uncertainty in the evaluation using the three 
GCMs models and three emission scenarios. 
Results showed that the 24-h rainfall depth 
rises in most of the stations under the three 
GCMs and emission scenarios and there are 
large uncertainties in the estimations of 24-h 
rainfall depths at seven stations attributable 
to GCMs, emission scenarios and other 
uncertainty sources. 

Massah Bavani et al. (2011) appraised 
climate change impact on the Aidoghmoush 
basin, Iran, for the period 2040-2069, using 
the A2 emission scenario and HadCM3 
atmospheric model. They found that rainfall 
would change around 30-40 percent in the 
future. Babaian et al. (2009) assessed climate 
change impact in Iran and used Echo-G 
output data based on the A1 emission 
scenario for 43 synoptic stations. Their 
results illustrated a 9% reduction in total 
rainfall. However, they also found that heavy 
and very heavy rainfall would increase 
between 13% and 39% for the period 2010-
2039 and concluded more rainstorm and 
heavier rainfall in future decades for Iran. 
Goodarzi et al. (2011) investigated the 
impact of climate change on rainfall in an 
arid region of Yazd, Iran. They used 
CGCM3 output data based on the A2 
emission scenario and showed an increase 
would happen in rainfall in December, 
January, February, and April and a decrease 
in other months in the period of 2010-2039 
based on the 1982- 2008 period. Thus, future 
climate changes are generally believed to 
lead to an increase in climate variability and 
the frequency and intensity of extreme 
events. 

Kim et al., (2002) claim that the 
evaluation of extreme events needs either the 
use of regional climate models, high-
resolution Global Climate Models, or 
downscaling data to a smaller time scale to 



H. Nazaripouya / Environmental Resources Research 7, 2 (2019)                                                                              91 

improve the analysis and accuracy of GCM 
results. The use of fewer climate projections 
in model simulations may also restrict the 
full range of possible scenarios and increase 
the uncertainty of modeled future climate 
change conditions. 

Some studies have utilized the multi-
model, multi-scenario approaches, or both, 
along with a high-resolution model 
simulation of probability of extreme events. 
When comparing different uncertainty 
sources for climate change impacts on the 
flood frequency in England, Leanna et al., 
(2009) found that the uncertainty linked with 
the GCM is the prime source of uncertainty. 
In this study, we aimed at estimating the 
potential impacts of climate change and 
identifying rainfall characteristics when 
assessing the impact of climate change on 
rainfall indices in the Kooshkabad watershed 
for two future periods 2020-2045 and 2045-
2065 under the three GCMs and two 
emission scenarios namely medium A1B and 

lower forcing B1 and RCP2.5, RCP8.5 
scenarios. List of CMIP3 and CMIP5 global 
climate models used in this study are 
presented in Table1. The contents of this 
paper are organized as follows. 

We first introduce the study area and 
data. Then we discuss the methodologies 
including stochastic weather generator 
LARS-WG and change factor for generating 
daily rainfall CIMP5 model data downscaled 
for the future. We then analyze impacts of 
climate change on rainfall indices and 
frequency at three rainfall gauge stations. 
 
Materials and methods   
Study area 
The study area covers 2400 km2 in 
Kooshkabad Watershed, located in Hamedan 
Province of Iran between 34°48′ to 34°85′N 
and 48°26′ to 48°67′E. Figure 2 gives an 
overview of the study area location. 

 
Table 1. List of CMIP3 and CMIP5 global climate models used in this study 

Research center Country Global 
climate model 

Model 
acronym 

Grid 
resolution 

Emissions 
scenarios Source 

National Institute for  
nvironmental Japan MRI-

CGCM2.3.2 MIHR 2.8 × 2.8° SRA1B, 
SRB1B 

K-1 Model 
Developers 

(2004) 
Studies 

Max-Planck Institute for 
Meteorology 

German
y 

ECHAM5-
OM MPEH5 MPEH5 1.9 × 1.9° 

SRA1B, 
SRA2, 
SRB1B 

Roeckner et 
al. (1996) 

Goddard Institute for 
Space Studies USA GISS-AOM GIAOM 3 × 4° SRA1B, 

SRB1B 
Russell et al. 

 (1995) 
 Max Planck Institute for 
Meteorology, 
GermanyMPI- 

German
y ESM-LR MPI 1/875× 

1/85° 
RCP2.5, 8.5  

scenario 
Raddats et al. 

(2007) 

 
The topography is rather complex, with 

elevation ranging from around 1750m to 
around 3570m. Annual rainfall shows 
substantial variations within the catchment, 
ranging from approximately 250mm to 
750mm, for the period 1983-2010. 
Maximum monthly rainfall at the study area 
occurs during March with an average of 
56.65mm, whereas the minimum monthly 
rain is 0.38mm, observed in September. 

The monthly minimum temperature 
equals −1.5◦C and occurs during February, 
whereas the monthly maximum temperature 
is +22.5C, and happens in July. The climate 

of the study area is semiarid with dry 
summer, humid and cold winter and humid 
spring respectively. 
 
Methodology 
Climate scenarios approach 
We analyzed climate simulations of the 20th 
and 21st century performed by models 
CMIP3 and CMIP5 for rainfall indices 
estimation in the sub basin of Kooshkabad 
Watershed in Hamedan Province, Iran. The 
meteorological data was received from the 
HPMO Organization. 
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Figure 2. Study area location 

 
However, our analyses were limited to 

three stations as only these stations had 
long and reliable data. Compared with the 
emission scenarios in CMIP3 and CMIP5, 
the representative concentration pathways 
(RCP) related to the radiative forcing are 
identified as new climate scenarios in 
CMIP5, and they include RCP2.6, RCP4.5, 
RCP6.0, and RCP8.5. So in this study, we 
mainly focused on the changes in extreme 
rainfall events in the study area at the end 
of the 21st century based on the CMIP3, 
A1b, and B1 emissions scenarios and 
CMIP5 models in the RCP2.5 (medium 
radiative forcing scenario) and RCP8.5 
(high radiative forcing scenario) scenarios. 
The daily rainfall outputs from one CMIP5 
model for the period 2020–2064 in the 
RCP2.5 and RCP8.5 scenarios and outputs 
from three CMIP3 models were used. In the 
low emissions scenario (RCP2.6), the 
atmospheric CO2 concentration peaks at 
just over 440 ppm in 2050 and then goes 
down to 420 ppm by the year 2100. 
Methane concentration culminates at just 
over 1770 ppb in 2010 and then reduces 
rapidly, reaching around 1250 ppb by 2100. 
The RCP2.6 scenario has total CO2 
emissions similar to present-day levels until 
2020 and then shows a sharp decline to zero 
carbon emissions by 2075. 

The high emissions scenario (RCP8.5) is 
characterized by a progressive increase in 
atmospheric CO2 concentration over the 
twenty-first century, climaxing at 935 ppm 
in 2100. Methane also shows a very 
significant rise in the atmosphere under this 
scenario, peaking at 3750ppb in 2100. Total 

CO2 emissions increase from present-day 
values to a maximum of around 28 PgC 
yr21 in 2100. The CO2-equivalent 
concentration for greenhouse gases in the 
year 2100 is 475 ppm for the RCP2.6 
scenario and over 1300 ppm for the RCP8.5 
scenario. For each of the RCPs, two 
ensemble members are run. 

We used some rainfall indices to 
compare the performances of the CMIP3 
and CMIP5 in generating rainfall indices. 
Rainfall indices assessed in this study are: 
sum of wet days, simple rainfall intensity, 
very heavy rainfall days (count of days 
where RR ≥ 20 mm), maximum one-day 
rainfall and frequency. Data was 
downscaled with the statistical downscaling 
method, LARS-WG, change factor (CH) 
and, bias-corrected statistical method. 

We analyzed the projected changes in 
daily precipitation, precipitation extremes 
and several precipitation indices. The 
output of three GCMs model (MPE5, 
GIOAM, MIHR ) were downscaled using 
the LARS-WG model to generate daily 
rainfall for CIMP3. Also, the change factor 
method with change in mean and variance 
was used for generating daily rainfall in 
CIMP5 model data. The emission scenarios 
were medium A1B (700 ppm by 2100) and, 
lower forcing, B1 (550 ppm by 2100).  

In all simulations, the time slices from 
1983 to 2010 were considered as the 
reference period, and periods 2020–2030, 
2046–2065, as a future scenario were 
extracted. 
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Downscaling approach 
LARS-WG Technique 
LARS-WG technique was developed in the 
UK by Dr, Mikhail Semenov as a tool for 
agricultural impact assessments (Racsko et 
al., 1991; Semenov and Porter, 1994; 
Semenov and Barrow, 1997). In two 
studies, LARS-WG was used for the 
simulation of weather data at a single 
meteorological station because of its 
capability of simulating extreme weather 
events (Semenov et al., 1998; Semenov, 
2008). The model uses a time series of 
rainfall, max and min temperatures, and 
solar radiation as inputs. 

LARS-WG analyzes the observed 
rainfall series to determine the statistics of 
wet-day occurrence and mean daily rainfall. 
In the process, semi-empirical distributions 
are redeveloped to simulate wet and dry-
spell length with daily rainfall amount 
conditional on the spell length (Semenov 
and Barrow, 2002; Khan et al., 2006; 
Hashmi et al., 2011). LARS-WG is used to 
generate synthetic historical climate data as 
well as data for each AOGCM and 
emissions scenario. In the process, a 
stochastic weather generator is used to 
generate daily rainfall patterns that are 
statistically similar to the observed 
patterns.After generating future climate 
change   data using LARS-WG for stations, 
F-Test is applied to compare the 
distributions of the observed and simulated 
rainfall indices during the baseline period 
(1983-2010). 
 
Change factor approach 
The change factor approach is a method 
that makes the output of GCMs useful for 
catchment-scale analysis and hydrological 
modeling. The method is based on the use 
of a change factor, the ratio between a mean 
value in the future and historical run. This 
factor is then applied to the observed time 

series to transform this series set into a time 
series that is representative of the future 
climate. The future daily rainfall (PFut,d) is 
obtained by multiplying the observed daily 
series (PObs,d) by the ratio of the mean 
monthly rainfall value for the GCM 
scenario series (PSce,m) to the control 
series (PCon,m), shown below. 
P Fut d=PObs d ×PSce m /pCon m     
We used changes in mean and variance 
suggested by Leander and Buishand (2007) 
for downscaling outputs of CMIP5 data. 
This method is based on a non-linear 
correction approach and corrects the mean 
and variance of the observed time series 
using the CF of the mean and variance. 
 
Results 
Effects of climate change o monthly 
rainfall 
In this section, the impact of climate change 
on monthly rainfall is briefly analyzed for 
the period 2045-2065 (2046–2065) based 
on three GCMs models and emission 
scenarios, A1B and B1. For 2045-2065 
period, the synthetic daily rainfall data are 
generated by LARS-WG. 

Monthly rainfalls from different GCMs 
and emission scenarios are extracted from 
the output of LARS-WG and calculated for 
different stations. Figure 2(a)–(c) shows the 
relative changes of monthly rainfall 
compared with GCM projections during the 
baseline period (1983– 010) under the three 
different scenarios in the region. Figure 2(a) 
showed that the relative change in monthly 
rainfall varies under the three GCMs 
models (MPE5, GIOAM, MIHR) for  
scenario A1B for the period 2045- 2065. 
The Range of relative change in January 
varies from -7% to -17.4% and relative 
change from January to June and 
November, December ranges from 17.2% 
to -32%. 
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a 

 
b 

 
c 

 
Figure 2. (a)–(c) Boxplot  graphs  of relative changes of monthly precipitation for the future 2045-2065 
under the three GCMs models (MPE5, GIOAM, MIHR) under scenario A1B (a) scenario B1 (b) and 
combined scenario A1B & B1 (c). 
 

We observe that monthly rainfall 
decreases in most months under the three 
GCMs scenario B1. Figure 3(b) show that 
the range of relative change in January 
varies from –2.5% to -13.9% and we see a 
five month decrease in rainfall while in 
other months an increase in monthly 
rainfall is seen with large uncertainty. We 
found that in the three GCMs models, 
relative change in rainfall varies under 
emission scenarios, A1B and B1. In the 
emission scenario A1B the decrease in 

monthly rainfall is more than that in 
scenario B1. Using a combination of the 
models, in Figure 2(c) we see that rainfall 
increases slightly with considerable 
uncertainty in the warm period and 
decreases in the cold period respectively for 
a future period (2046–2065). Hence, results 
showed decrease in rainfall in January, 
February, March, April, November and 
December with the lowest uncertainty and 
increase in rainfall in May, June and August 
with the highest uncertainty.  

 
Table  2.  RMSE and EF errors for rainfall indices and probability distribution function in the stations 

Parameters Distributions solan yalfan gonbad 
RMSE EF RMSE EF RMSE EF 

Simple Daily 
Intensity Index 

Normal 0.33 0.95 0.17 0.97 0.31 0.93 
Lognorm2par 0.38 0.94 0.19 0.96 0.27 0.95 
Lognorm3par 0.38 0.94 0.19 0.96 0.25 0.95 
Pearson typ3 0.32 0.96 0.17 0.97 0.25 0.95 

Logpearson typ3 0.3 0.96 0.15 0.97 0.25 0.95 
Gambel1 0.49 0.9 0.26 0.92 0.22 0.96 
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Figure 3. Comparison of CMIP3 and CMIP5 models of average monthly precipitation for 2020–2045 
period based on reference period (1983–2010). 
 

The relative change in monthly rainfall 
varies under the three GCMs models 
(MPE5, GIOAM, MIHR) scenario A1B, B1 
and, RCP2.6 RCP8.5 for the future period 
2020-2045, as shown in Figure3. 

Range of relative change in January 
varies from -8.5% to -1.9% and 
corresponding change in all month ranges 
from -95.4% in September to 59% in June 
under the three GCMs models (MPE5, 
GIOAM, MIHR) scenario A1B, B1 and 
RCP2.6 RCP8.5 for the future period 2020-

2045. The greatest relative change in 
monthly rainfall was seen in the warm 
season under the RCP2.6 RCP8.5 scenarios. 
The relative change of average monthly 
rainfall is predicted to decrease in winter 
under the CIMP3 and CIMP5 models for 
2020–2045 period. In Figure 3, it also can 
be observed that the monthly rainfall 
decreases in most of the months, and the 
relative change of annual rainfall varies 
from 10.92% under RCP2.6 to -16.04% in 
SRES A1B, shown in Figure 4. 

 

 
 
Figure 4. Comparison of CMIP3 and CMIP5 models of average monthly precipitation for 2046-2065 
period based on reference period 1983–2010.  

 
Rainfall indices analysis by fitting a 
distribution 
After we made sure that the two data series 
follow the same continuous distribution, we 
compared the simulated rainfall indices and 
observed data sets. For assessing the 

frequency and return period and comparing 
the two data series, it was necessary to 
select the best probability distribution 
function for frequency analysis of rainfall 
indices. Table2 shows the extracted and 
computed best distribution functions for 
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simulated rainfall indices. Based on RMSE 
and EF methods, the best probability 
distribution function was selected. Results 
showed that most of the data followed the 
Log Pearson Type III. In Table3, we show 
the observed and simulated data for 

different return periods at three stations 
using log Pearson Type III probability 
distribution function. We see that the errors 
are small for most of the return periods and 
indices.

 
Table.3  Rainfall indices estimated for different return periods in the Yalfan station 

Parameters R Period 100 50 25 10 5 

Simple Daily Intensity 
Index 

Observed 9.4 9.2 8.9 8.5 8 
Simulated 9.8 9.5 9.1 8.6 8.1 

Error 4.4 3.4 2.5 1.3 0.2 

Maximum one-Day 
Rainfall 

Observed 69.5 62.9 56.4 47.6 40.7 
Simulated 63.4 58.5 53.5 46.4 40.4 

Error 8.9 7 5.1 2.6 0.7 

Heavy Rainfall Days 
≥20 

Observed 8.4 7.3 6.3 4.9 3.8 
Simulated 7.7 6.8 5.8 4.5 3.5 

Error 7.9 7.9 7.8 8.1 8.7 
 
After analyzing frequency distribution, Log 
Pearson Type III distribution was selected 
as the best frequency distribution and fitted 
to the data for CMIP3 and CMIP5 models. 
 
Assessment of climate change impacts on 
rainfall indices  
CMIP3 and CMIP5 data models were used 
to analyze daily climate model data sets 
over the study area. For CMIP3, we chose 
the GIOAM, MIHR, CMIP3 models, which 
provide the rainfall indices under the 
historical period 1983–2010. 

For evaluating the relative change in the 
three GCMs models and scenarios, 50y 
return period was computed and compared 
with the base period 1983-2010. 

The relative changes of the calculated 
50y return period for rainfall indices were 
estimated and showed against the base 
period using the Log Pearson Type III 
probability distribution function in Figures 
5, 6 and, 7(a)–(d). Here we focused on the 
analysis of the possible future changes in 
50y design rainfall depths based on 
different GCMs and scenarios. 

Figure 5(a) and (b) show relative 
changes in 50y simple daily intensity, 
decreasing in Gonbad and, increasing in 
Solan and   Yalfan stations for the future 
2020-2045   for scenarios A1B and B1. 

However, under the scenario A1B, Figure 
5(c) shows increase only in Solan and 
decrease in Gonbad and solan, while under 
scenario B1 (d) we see an increase in Solan 
and Yalfan, and a decrease in Gonbad for 
future 2045-2065 with respect to the base 
period. Figure 6(a)-(d) depicts relative 
changes in 50y maximum one-day rainfall 
for the future 2045-2065 for scenario A1B 
(a) which shows decrease in rainfall under 
scenario A1B (c) and increase in Solan and 
yalfan under scenario B1 (d). Figure 7 (a)–
(d) demonstrates the relative changes in 50y 
heavy rainfall days ≥20. For the future 
2045-2065 for scenario A1B (c) heavy 
rainfall days decrease in Yalfan while for 
scenario B1(d), this index increases.  

The results showed that the three indices 
in Solan and Yalfan stations for both future 
periods decrease under scenario A1B and 
increase under scenario B1. 

Figure 6 (a)–(b) compares the relative 
changes in 50y maximum one-day rainfall 
for the future 2020-2045 for scenario A1B 
(a), scenario B1(b) and the future period 
2045-2065 for scenario A1B (c) scenario  B 
1(d) under the three GCMs models (MPE5, 
GIOAM, MIHR). The results showed 
increase in 50y maximum one-day rainfall 
for the future 2045-2065. 
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a b c d 

 

Figure 5. (a)–(d) boxplot graphs of elative changes in 50y simple daily intensity index for the future 
2020-2045  for scenario A1B (a), scenario B1(b) and the future period 2045-2065 for scenario A1B (c) 
scenario B1(d) under the three GCMs models CMIP3 (MPE5, GIOAM , MIHR). 
 

    
a b c d 

 
Figure 6. (a)–(d) boxplot graphs of elative changes in 50y maximum one-day rainfall for the future 2020-
2045  for scenario A1B (a), scenario B1(b) and 2045-2065 for scenario A1B (c) scenario  B1(d) under the 
three GCMs model (MPE5, GIOAM, MIHR). 
 

    
a b c d 

 
Figure 7. (a)-(d) boxplots of relative changes in 50y heavy rainfall days ≥20 for the future 2020-2045 for 
scenario A1B (a), scenario  B1(b) and future period 2045-2065 for scenario A1B (c), B1(d) under the 
three GCMs models (MPE5, GIOAM, MIHR). 
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Figure 8. Relative changes in rainfall indices for scenarios A1B, B1and RCP2.5 and RCP8.5 scenarios  
for the future 2020-2045. 
 

Rainfall indices of sum of wet days, 
number of days> 1mm and, maximum one-
day rainfall are projected to decrease under 
the scenarios B1, A1B and sum of wet days, 
simple daily intensity and, heavy 

precipitation days >10 decrease under the 
RCP2.6. All of the rainfall indices were 
expected to increase in RCP8.5 scenarios 
for the future 2020-2045 as shown in 
Figure 8. 

 

 
 
Figure 9. Relative changes in rainfall indices for scenarios A1B, B1 and RCP2.5 and RCP8.5 
for the future 2046-2065. 
 

Rainfall indices show considerable 
changes toward the end of the 21st century. 
Analysis of rainfall indices shows that 
except scenario RCP2.6 and SRES A1B, 
the predictions show a decrease in the 
indices as we progress toward the end of 
the 21st century. This indicates significant 

decreases in the sum of wet days, number 
of days> 1mm, simple daily intensity and, 
heavy precipitation days (Figure 8a). Also, 
rainfall indices for RCP8.5 scenarios and 
SRES A1B are predicted to increase toward 
the end of the 21st century. All of the 
Rainfall indices were expected to decrease 
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under the SRES A1B for the future 2046-
2065, while they were predicted to increase 
in RCP2.6 scenarios as shown in Figure 9. 
 
Discussion 
I conclude that uncertainties exist in CMIP3 
and CMIP5 models for the rainfall indices. 
Figures 5, 6 and 10 show various return 
periods for emission scenarios CMIP3 
models for the sum of wet days, heavy 
rainfall, maximum one-day rainfall and, 
simple daily intensity index. The CMIP3 
models and emission scenarios with various 
return periods predict considerable 
variation in (a) the sum of wet days, (b) 
simple daily intensity index, (c) maximum 
one-day rainfall and, (d) heavy rainfall days 
≥20 for the period 2045-2056. Analysis of 

rainfall indices shows that except for other 
rainfall indices, heavy rainfall days ≥20mm 
is predicted to be highest under the CMIP3 
and CMIP5 models except for RCP2.6. It 
could be observed that the return period of 
(a) simple daily intensity index, (b) 
maximum one-day rainfall under SRES B1 
and RCP2.6 scenarios based on CMIP3, 
CMIP5 models are predicted to increase for 
2045- 2056 based on the observed period 
1983-2010, (Fig. 9). However, the return 
period of (a) sum of wet days, (b) simple 
daily intensity index and, (c) heavy rainfall 
days ≥20 under the SRES A1B and RCP8.5 
scenarios based on CMIP3 and CMIP5 
were predicted to increase toward the end 
of the 21st century. 

 

 
a b 

 
c d 

Figure 10. (a)–(d). Various return periods under the scenarios A1B, B1 and RCP2.5 and RCP8.5 
scenarios for the future 2046-2065 for (a) sum of wet days, (b) simple daily intensity, (c) maximum one-
day rainfall and (d) heavy rainfall days > 20 index. 
 

A critical assessment of the impact of 
climate change on rainfall indices is the 

uncertainty that originate from different 
sources. These sources include future 
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greenhouse gas emissions, GCMs, 
downscaling methods, impact analysis 
models and parameters and so on (Yue-Ping 
Xu, et al., 2012). In this study, CMIP3, 
CMIP5 models and emission scenarios 
have been used. 
  Also, to investigate the impact of 
climate change on extreme rainfall, only 
one downscaling approach and one 
probability function (log Pearson Type III 
probability function) have been used. So, 
different probabilities bring about large 

uncertainties in the extrapolation of extreme 
rainfalls for return periods. Based on our 
current knowledge, this applies to projected 
changes in rainfall indices over the study 
area. Our focus in this paper was on the 
projected future changes in total 
precipitation and the related indices. 
Nevertheless, it is of utmost importance to 
also assess the ability of the different 
models to simulate the observed 
precipitation characteristics in the region. 

 

 
Figure 11. Boxplots of relative changes comparing observed period (1983-2010) with GCMs model 
under emission scenarios A1B and B1 for the future period 2045-2065. 
  
Figure 11 provides a boxplot of relative 
changes for GCMs model under emission 
scenarios A1B and B1. This figure shows 
that, although the annual rainfall decreases 
in the study area, the indices of heavy 
rainfall days≥20, maximum one-day rainfall 
and simple daily intensity index increase 
for the future period 2045-2065 based on 
the observed period. 
 
Conclusion 
I used daily precipitation output of a large 
set of global and downscaled climate 
change projections available for a historical 
period and two future periods for several 
emission scenarios to project changes in 
future precipitation and evaluate extremes 
over Kooshkabad Watershed, Hamedan 
Province, west of Iran based on CMIP3, 
CMIP5 models. This study revealed the 
noticeable changes due to climate changes 
in the rainfall indices over the study area. 
Results showed that the monthly rainfall 

decreased in January, February, March, 
April, November and, December, with the 
lowest uncertainty and increase in rainfall 
in May, and June and the highest 
uncertainty in August. In general, a critical 
result of this study is the increase of rainfall 
indices under the most CMIP3, CMIP5 
models and scenario B1 while the reverse 
was found for the emission scenario A1B. 
These findings show the difficulty with 
which water resources managers and 
planners are faced with when making 
decision under such considerable 
uncertainty in climate change. However, 
this does not make us needless of such 
investigations of rainfall characteristics for 
future climate conditions. 

Analysis of return period for (a) heavy 
rainfall days with ≥ 20,  (b) maximum one-
day rainfall and (c) simple daily intensity 
index showed significant decrease under 
SRES A1B, RCP8.5 scenarios and, increase 
under SRES B1, RCP8.5 for CMIP3, 
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CMIP5 models and scenarios over the study 
area. Results showed that the annual rainfall 
depth decrease under the three GCMs 
models for scenario A1B was 11.8% and for 
scenario B1 was 1.44% for the future 
period 2045-2065. However, heavy rainfall 
days ≥20 decreased by 8.14% under the 
scenario A1B and increased by 13.7% 
under the B1 scenario. We showed that 
although relative annual changes decreased 
for GCMs models under emission scenarios 
A1B and B1, however, slight increase was 
likely in heavy rainfall days ≥20, maximum 
one-day rainfall and simple daily intensity 
index in the study area.  

Future work should consider the 
uncertainties involved in climate change 
impact analysis on rainfall characteristics 
for downscaling methods that use regional 
climate models (RCMs) and statistical 
downscaling, change factor, change factor 
quantile mapping, and SDSM. 
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