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ABSTRACT 
  
The identification and classification of tree leaves hold significant importance in botanical and 
agricultural research. This study focuses on the development of an advanced computer vision system for 
classifying leaves from five distinct tree species, including pomegranate, fig, almond, raspberry, and 
hawthorn. The proposed system utilizes a dataset comprising 525 digital images to extract diverse 
features from the color domain and the gray-level co-occurrence matrix (GLCM). From each image, 126 
features are extracted from the color domain and 80 features from the GLCM. The feature selection 
process is conducted using an advanced method that combines artificial neural networks (ANN) with 
ant colony optimization (ACO). This approach aids in identifying key features, including the angular 
second moment, angular contrast, angular maximum probability, the normalized difference index in the 
CMY and HSV color spaces, and the standard deviation of the first component in the YCbCr color space. 
Leaf classification is performed using a hybrid ANN and metaphor competition algorithm, achieving a 
classification accuracy of 93%. This system serves as an effective tool for precise and efficient leaf 
classification and has the potential to lead to significant advancements in botanical research and 
agricultural applications. Furthermore, the results of this study indicate that the use of intelligent 
methods in feature selection can enhance the accuracy and efficiency of classification models. 
Ultimately, this research emphasizes the importance of developing advanced techniques for leaf 
identification and classification, representing a crucial step toward improving existing methods in this 
field. 
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1. Introduction 
 

Machine vision systems have proven to be highly effective 
tools for the analysis of tree and plant leaves, which are readily 
available throughout the growing season and offer a rich array of 
extractable features (Novotny and Suk, 2013). Consequently, a 
significant body of research has focused on the classification of 
diverse leaf types. For instance, (Hamuda et al., 2016) employed 
a self-organizing artificial neural network (ANN) to classify 15 
distinct leaf types, including species such as Ulmus carpinifolia, 
Acer platanoides, and Salix aurita. This research involved the 
preparation of 1153 image segments for classification, 
emphasizing invariant binary two-dimensional image 
recognition. Two methodologies were proposed: one targeting 
features invariant to translation, scaling, rotation, and reflection, 
and another addressing features invariant to general affine 
transformations, achieving a classification accuracy of 85.71%. 

In a study (Mursalin et al., 2013), five types of weed leaves—
Capsicum, Burcucumber, Cogongrass, Marsh herb, and 
Chenopodium album—were classified using Bayesian classifiers, 
support vector machines (SVM), and decision tree methods. The 
images were captured with a digital camera positioned 40 cm 
above the ground. This study analyzed 400 image segments (80 
per weed type), extracting nine features such as area, perimeter, 
and convexity. Among the methods tested, the Bayesian classifier 
exhibited the highest classification accuracy. A few other studies 
are reviewed in Table 1. 

The present study seeks to develop an advanced computer 
vision system that leverages image processing techniques 
alongside a hybrid ANN–ant colony optimization (ACO) algorithm 
to classify leaves from pomegranate, fig, almond, raspberry, and 
hawthorn trees. The integration of ANN and ACO is motivated by 
their respective abilities to efficiently handle complex, high-
dimensional data and to enhance the learning process. 

 
2. Materials and Methods 
 
2.1. Imaging 

The imaging process was conducted to capture high-quality 
images of tree leaves. These images were taken in Kermanshah 
province under meticulously controlled lighting conditions to 
ensure uniformity and precision in feature extraction and 
classification. The imaging setup comprised white LED lights 
with an intensity of 327 lux, providing consistent illumination. An 
industrial-grade camera (ImagingSource, model DFK-23GM021) 
equipped with a 1/3 inch Aptina CMOS MT9M021 sensor, 
offering a resolution of 1.2 megapixels (1280 x 960), was utilized. 
The camera was strategically positioned 15 cm above the ground 
to capture detailed images of the leaves. This setup was selected 
to maintain high-resolution image quality, which is crucial for 
accurate analysis. A total of 525 images were collected, 
distributed among the tree species as follows: pomegranate (108 
images), fig (115 images), almond (99 images), raspberry (105 
images), and hawthorn (98 images). 
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Table 1. Summary of research in the field of plant species detection 

Study Feature Type Number of 
species 

Dataset size & 
Characteristics 

Algorithm Used Accuracy 

Bambil et al., 2020 Color, Shape, 
Texture 

30 40 leaves, 30 species AdaBoost, Random Forest, 
SVM, Deep Learning 

>93.00% 

Kaur and Kaur, 
2019 

Texture, Color 15 1,125 images, 15 species Multiclass-SVM 93.26% 

Kumar et al., 2012 Shape 184 29,107 images, 184 species SVM, Nearest Neighbor 96.80% (top 5 
accuracy) 

Mangaoang and 
Samaniego, 2023 

Shape, Color, 
Texture 

25 31,508 images, 25 species KNN, SVM, BP networks, CNN 98.50% (CNN) 

Naga et al., 2023 Shape, Texture 3 No mention found, 3 species SVM 99.00-100.00% 
Sabzi et al., 2020 Shape, Color, 

Texture 
5 516 images, 5 species Hybrid ANN-ABC, Hybrid 

ANN-BBO, LDA 
94.04% (ANN-ABC) 

Satti, 2013 Color, Shape 33 1,907 images, 33 species ANN, KNN 93.30% (ANN) 
Tan et al., 2020 Vein Morphology No mention 

found 
No mention found Pre-trained AlexNet, Fine-

tuned AlexNet, D-Leaf (custom 
CNN) 

95.54% (Fine-tuned 
AlexNet) 

Unger et al., 2016 Shape, Vein 
Morphology 

26 (Test set I), 
17 (Test set II) 

260 (Test set I), 170 (Test 
set II), 26 & 17 species 

SVM 73.21% (Test set I), 
84.88% (Test set II) 

Çugu et al., 2017 Deep and Hand-
crafted Features 

57 5,408 images, 57 species CNN, SVM No mention found 

 
2.2. Image segmentation 

The YCbCr color space was strategically selected for the 
segmentation of leaf images, effectively isolating the leaf 
foreground from the background. The YCbCr color space is 
particularly advantageous due to its ability to distinctly separate 
chrominance (color information) from luminance (brightness), 
which is crucial for accurately distinguishing leaves from their 
backgrounds, especially under varying lighting conditions. The 
segmentation process involved the application of thresholding 
techniques on the first (Y) and second (Cb) channels. An optimal 
threshold value was meticulously determined through 
comprehensive image analysis to ensure precise segmentation. 
The thresholding criteria are represented in Eq. (1). 
𝑌(𝑖, 𝑗) ≤ 70 𝑜𝑟 𝐶𝑏(𝑖, 𝑗) ≥ 50                                                                   (1) 

A pixel is classified as part of the leaf if the luminance 
component (Y) is less than or equal to 70, or if the chrominance 
blue component (Cb) is greater than or equal to 50. Pixels not 
meeting these criteria are categorized as background (Gonzalez 
et al., 2004). This method ensures robust segmentation, 
facilitating subsequent feature extraction and classification. 

 
2.3. Feature extraction 

Color and texture features extracted to create the dataset. 
These features were meticulously selected due to their 
demonstrated efficacy in encapsulating the critical color and 
texture attributes essential for accurate leaf classification. 

The extraction of color features was systematically divided 
into two categories: statistical features and vegetation index-
related features. Statistical features were derived by calculating 
the mean and standard deviation of each component across 
multiple color spaces, including RGB, YCbCr, YIQ, CMY, HSV, and 
HSI. This thorough analysis yielded a total of 42 features, each 
contributing essential color information that facilitates the 
differentiation of various leaf types. Furthermore, vegetation 
index-related features were computed, as outlined in Table 2. 
Initially extracted for the RGB color space, these indices were 
subsequently extended to other color spaces, resulting in a 
comprehensive set of 84 features. These indices are crucial for 
enhancing the system’s ability to discriminate between leaf 
species by capturing subtle color variations indicative of different 
species. The gray-level co-occurrence matrix (GLCM) is a 
statistical method of examining texture that considers the spatial 
relationship of pixels. It is defined as a matrix where the number 
of rows and columns is equal to the number of gray levels in the 
image. The matrix element P(i,j) is the relative frequency with 
which two pixels, separated by a pixel distance d, occur in the 
image, one with gray level i and the other with gray level j. The 
GLCM is defined as Eq. (16). 

 

 
Table 2. Vegetation index-related features 

Feature Formula  
Normalized RGB 
Component 1 

𝑅𝑛 =
𝑅

𝑅 + 𝐺 + 𝐵
 

(2) 

Normalized RGB 
Component 2 

𝐺𝑛 =
𝐺

𝑅 + 𝐺 + 𝐵
 

(3) 

Normalized RGB 
Component 3 

𝐵𝑛 =
𝐵

𝑅 + 𝐺 + 𝐵
 

(4) 

Gray Channel 𝑔𝑟𝑎𝑦 = 0.2898 × 𝑅𝑛 + 0.5870 × 𝐺𝑛

+ 0.1140 × 𝐵𝑛 
(5) 

Excess Green (EXG) 𝐸𝑋𝐺 = 2 × 𝐺𝑛 − 𝑅𝑛 − 𝐵𝑛 (6) 
Excess Red (EXR) 𝐸𝑋𝑅 = 1.4 × 𝑅𝑛 − 𝐺𝑛 (7) 
Color Index for Extracted 
Vegetation (CIVE) 

𝐶𝐼𝑉𝐸 = 0.441 × 𝑅𝑛 − 0.811 × 𝐺𝑛

+ 0.385 × 𝐵𝑛

+ 18.78 

(8) 

Difference of Excess Green 
and Red (EXGR) 

𝐸𝑋𝐺𝑅 = 𝐸𝑋𝐺 − 𝐸𝑋𝑅 (9) 

Normalized Difference 
Index (NDI) 

𝑁𝐷𝐼 =
𝐺𝑛 − 𝐵𝑛

𝐺𝑛 + 𝐵𝑛

 
(10) 

Green Minus Blue Index 
(GB) 

𝐺𝐵 = 𝐺𝑛 − 𝐵𝑛 (11) 

Red-Blue Contrast Index 
(RBI) 

𝑅𝐵𝐼 =
𝐺𝑛 − 𝐵𝑛

𝐺𝑛 + 𝐵𝑛

 
(12) 

Red-Green Index (ERI) 𝐸𝑅𝐼 = (𝑅𝑛 − 𝐺𝑛) × (𝑅𝑛 − 𝐵𝑛) (13) 
Excess Green Index (EGI) 𝐸𝐺𝐼 = (𝐺𝑛 − 𝑅𝑛) × (𝐺𝑛 − 𝐵𝑛) (14) 
Excess Blue Index (EBI) 𝐸𝐵𝐼 = (𝐵𝑛 − 𝐺𝑛) × (𝐵𝑛 − 𝑅𝑛) (15) 

 

𝑃(𝑖, 𝑗) = ∑ ∑ {
1 𝐼𝑓 (𝑥, 𝑦) = 𝑖 𝑎𝑛𝑑 𝐼(𝑥 + ∆𝑥, 𝑦 + ∆𝑦) = 𝑗
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑀
𝑦=1

𝑁
𝑥=1        (16) 

where I(𝑥, 𝑦) is the intensity at pixel (𝑥, 𝑦), and (∆𝑥, ∆𝑦) is the 
offset (Haralick et al., 1973; Petron and Bosdogianni, 2006). 
Table 3 presents features extracted from four distinct angles: 0, 
45, 90, and 135°, resulting in a comprehensive set of 80 features. 
These features are critical for capturing the texture information 
necessary for distinguishing between different leaf species. 
 

2.4. Feature selection 
The feature selection process utilized a sophisticated hybrid 

approach combining ANN with ACO. This methodology 
capitalizes on the ANN’s ability to discern intricate patterns and 
the ACO’s strength in optimizing feature subsets, thereby 
ensuring the identification of the most relevant features for 
classification tasks. The features selected through this process 
include variance difference at 0 degrees, dissimilarity at 90 
degrees, maximum probability at 45 degrees, the normalized 
difference index in both CMY and HSV color spaces, and the 
standard deviation of the first component in the YCbCr color 
space. This deliberate selection process significantly enhances 
the system’s classification accuracy by concentrating on the most 
informative features, thus improving the overall performance of 
the classification model. 
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Table 3. Texture features extracted from the gray-level co-occurrence 
matrix (GLCM) 

No. Feature No. Feature 
1 Homogeneity 11 Entropy 

2 
Normalized Inverse 

Difference 
12 

Normalized Inverse Difference 
Moment 

3 Coefficient of Variation 13 
Inverse Difference in 

Homogeneity 
4 Standard Deviation 14 Second Diagonal Moment 

5 Cluster Shade 15 
Information Measure of 

Correlation 1 

6 Cluster Prominence 16 
Information Measure of 

Correlation 2 
7 Sum Entropy 17 Dissimilarity 
8 Variance 18 Energy 
9 Mean 19 Contrast 
10 Diagonal Moment 20 Correlation 

 
2.5. Classification 

The classification of the leaf types was executed using a 
hybrid classifier that integrates ANN with ACO. This hybrid ANN-
ACO classifier harnesses the ANN’s capacity to learn complex 
patterns, leading to efficient training processes and significantly 
improved classification accuracy. The synergy between ANN and 
ACO ensures that the classifier is both robust and adaptable, 
capable of delivering high performance across diverse 
classification scenarios. To facilitate model training and 
evaluation, 70% of the images were randomly selected and 
considered for training and validation, while the remaining 30% 
were reserved for testing the system’s performance. 

 
2.6. Performance metrics 

The performance of the classification system is evaluated 
using precision (Eq. 17   ), recall (Eq. 18  ), and F1-score (Eq. 19) 
(Powers, 2011; Jain et al., 2000) 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                    (17) 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                          (18) 

F1 − score = 2 ⋅
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                                           (19) 

where TP is the number of true positives, FP is the number of 
false positives, and FN is the number of false negatives. 

 
3. Results and Discussion 
 
3.1. Optimal configuration of the classifier 

The optimal configuration of the ANN classifier was 
determined using the ACO algorithm, as presented in Table 4. 
This optimization process is crucial for fine-tuning the network’s 
parameters to achieve enhanced performance and accuracy.The 
architecture of the MLP classifier consists of three distinct layers, 
each employing a unique transfer function to optimize learning 
capabilities. Specifically, the first layer utilizes the radbas 
function, the second layer incorporates the tribas function, and 
the third layer applies the tansig function. The training of the 
network is executed using the trainlm function, which 
implements the Levenberg-Marquardt backpropagation 
algorithm, renowned for its effectiveness in ANN training. 
Furthermore, the learnos function is employed for the online 
sequential learning of weights and biases, thereby enabling 

continuous learning and adaptation to new data inputs. This 
comprehensive configuration ensures that the ANN is well-
equipped to handle complex classification with high precision. 

 
3.2. Performance evaluation of the model 

Table 5 presents the confusion matrix for the hybrid ANN-
ACO classifier, structured as a 5 × 5 matrix. This matrix provides 
a detailed assessment of the classifier’s predictive accuracy and 
its ability to distinguish among these diverse classes. The 
confusion matrix is a critical tool for evaluating the classifier’s 
performance, offering insights into both the true positive rates 
and the misclassification rates for each class. It serves as a 
foundation for calculating various performance metrics, such as 
precision, recall, and F1 score, which are essential for a 
comprehensive understanding of the classifier’s effectiveness. 

According to the table, the hybrid ANN-ACO classifier 
achieved an impressive overall accuracy of 93%, reflecting its 
robust performance in classifying the dataset accurately.The 
receiver operating characteristic (ROC) curves depicted in Figure 
1 further illustrate the classifier’s performance by showing the 
trade-off between sensitivity and specificity for each class. The 
classes, from 1 to 5, showed pomegranate, fig, almond, raspberry, 
and hawthorn, respectively. These curves are instrumental in 
visualizing the classifier’s ability to discriminate between the 
different leaf types, providing a graphical representation of its 
diagnostic ability across various threshold settings.  

The performance of the hybrid classifier was rigorously 
evaluated using key performance metrics: precision, recall, F1-
score, and accuracy (Table 6). These metrics, derived from the 
confusion matrix, offer a comprehensive assessment of the 
classifier’s proficiency in accurately distinguishing between the 
different leaf types. The precision metric quantifies the 
classifier’s ability to correctly identify positive instances, while 
recall measures the ability to capture all relevant instances. The 
F1-score, a harmonic mean of precision and recall, provides a 
balanced measure of the classifier’s accuracy. These metrics 
collectively underscore the classifier’s robust performance across 
all classes. According to the feature selection, key features were 
recognized as the angular second moment, angular contrast, 
angular maximum probability, the normalized difference index in 
the CMY and HSV color spaces, and the standard deviation of the 
first component in the YCbCr color space. 

The feature correlation matrix depicted in Figure 3 examines 
the interrelationships among features. This matrix is 
instrumental in identifying potential multicollinearity issues and 
can guide the enhancement of feature selection strategies, 
thereby improving model performance. 
 
Table 4. Optimized parameter values for the ANN configured by ACO 

Parameter Optimal Value 

Number of Neurons Layer 1: 18, Layer 2: 5, Layer 3: 13 

Number of Layers 3 

Transfer Function Layer 1: radbas, Layer 2: tribas, Layer 3: tansig 

Training Function trainlm (Levenberg-Marquardt 
backpropagation) 

Learning Function for 
Weights/Biases 

learnos (Online Sequential Learning) 

 

Table 5. Confusion matrix for the hybrid ANN-ACO classifier on test dataset 

Actual Class

 Predicted Class 

Total Instances

 

 Pomegranate Fig  Almond Raspberry Hawthorn  

Pomegranate 27 1 1 0 1 29 

Fig  1 36 0 2 0 38 

Almond 0 1 26 0 2 29 

Raspberry 1 0 0 33 0 34 

Hawthorn 0 2 1 0 25 28 
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Figure 1. Receiver operating characteristic (ROC) curves for each class 

 
Table 6. Performance Metrics for the Hybrid ANN-ACO Classifier 

Class Precision Recall F1-Score 

Pomegranate 0.90 0.93 0.92 

Fig 0.92 0.95 0.94 

Almond 0.90 0.90 0.90 

Raspberry 0.97 0.97 0.97 

Hawthorn 0.89 0.89 0.89 

 

 
Figure 2. Model accuracy across training epochs 

 

Figure 3. Feature correlation matrix 

 
4. Conclusion 
 

The YCbCr color space has emerged as the most effective for 

segmentation tasks, particularly under controlled lighting conditions, 

significantly enhancing the precision and reliability of image 

processing in various computer vision applications. Despite 

advancements, the detection and classification of diseased leaves 

remain a formidable challenge, necessitating the development of 

advanced classification techniques for accurate identification and 

categorization, crucial for agriculture and plant pathology. The 

application of intelligent feature selection methods has proven 

superior to traditional statistical approaches, enhancing model 

accuracy and efficiency by reducing dimensionality and focusing on 

the most relevant features. The hybrid ACO classifier has 

demonstrated a remarkable accuracy rate of 93%, underscoring its 

robustness and effectiveness in managing complex classification 

tasks and highlighting its potential for broader applications in 

machine learning and data analysis. Future research should focus on 

integrating these findings into real-world applications, exploring the 

scalability of the hybrid ANN-ACO classifier, and refining feature 

selection techniques to adapt to diverse datasets and evolving 

challenges in computer vision. 
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