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ABSTRACT 
  
This study investigates the prediction of photovoltaic (PV) energy production using advanced machine 

learning algorithms, leveraging meteorological data and production capacity from 300 residential PV 

plants in Sydney, Australia. The dataset was processed into daily values to account for weather 

variability, and three machine learning models, i.e., random forest regression (RFR), support vector 

regression (SVR), and light gradient boosting regression (LightGBR), were implemented. Following 

rigorous preprocessing and hyperparameter optimization, LightGBR exhibited superior predictive 

performance, achieving a coefficient of determination (R²) of 0.9020, a mean absolute error (MAE) of 

3.1621, and a mean squared error (MSE) of 0.1005. Compared to previous studies, the optimized 

LightGBR model demonstrated enhanced accuracy in PV energy forecasting, underscoring its potential 

for improving predictive modeling in this domain. These findings have significant implications for 

optimizing energy distribution, enhancing smart grid integration, and supporting decision-making in 

energy management systems. Accurate forecasting of PV energy output is essential for improving 

operational efficiency, minimizing energy waste, and advancing sustainability objectives in renewable 

energy management. 
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1. Introduction 
 

With the advancement of technology and the increase in 
population, energy consumption has significantly risen. 
According to reports published by British Petroleum (2023), the 
average energy consumption per person reached 57.6 kWh. The 
total global energy consumption in 2022 was reported as 64.04 
EJ, showing a 1.08% increase compared to the 59.741 EJ of 2021. 
Fossil fuels account for 81.8%, renewable energy 7.5%, 
hydroelectric 6.7%, and nuclear 4%. The International Energy 
Agency reports indicate fossil fuels dominate global energy 
consumption, while non-carbon sources gradually increase. 
Despite the importance of fossil fuels in the global energy supply, 
these resources have several negative effects, including the 
production of greenhouse gases such as CO2, which are 
recognized as the primary cause of climate change (Karakurt and 
Aydin, 2023). 

Concerns about climate change, environmental damage, and 
the limitations of renewable energy resources have made using 
renewable energy technologies, such as geothermal, solar, wind, 
and biofuels, increasingly attractive and rapidly expanding. In 
addition to reducing greenhouse gas emissions and offering 
limitless production sources, it can provide energy to rural and 
remote areas  (Khezri et al., 2022). These technologies create 
extensive employment opportunities in production, installation, 
and regular consumption of energy  (Giri et al., 2024). 

Photovoltaic (PV) and solar thermal technologies are among 
the most widely adopted renewable energy solutions due to their 
ability to harness solar radiation with minimal environmental 
impact. PV systems, in particular, have evolved through multiple 
generations, from crystalline silicon cells to advanced multi-

junction and nanomaterial-based designs, improving efficiency 
and cost-effectiveness. These systems can be categorized as 
centralized or decentralized, with decentralized rooftop PV 
installations gaining popularity for their scalability and direct 
energy consumption benefits. Additionally, concentrated solar 
power (CSP) systems offer dispatchable power generation by 
integrating thermal energy storage, making them suitable for 
large-scale applications in high-irradiance regions (Osman and 
Qureshi, 2025). One common application of PV systems is their 
rooftop installation, which has rapidly grown due to reduced 
installation costs and government incentive packages. These 
systems allow for direct consumption of the generated electricity, 
and they can also inject the produced electricity into the power 
grid to earn revenue. Therefore, rooftop PV systems are 
considered a suitable and economical solution for consumers (Le 
and Benjapolakul, 2019). 

In recent years, organizations and various systems have been 
recorded. The increased attention to data mining and the use of 
recorded data stems from several factors: reduced data storage 
costs and easier data collection through networks, advancements 
in strong and efficient machine learning algorithms for data 
processing, and decreased computational costs that enable the 
use of complex computational methods for data analysis  
(Mitchell, 1999). Today, the installed capacity of PV systems is 
rapidly increasing, and many of these systems continuously 
publish their electricity production data. The use and access to 
these data are crucial for modeling PV networks or improving 
solar energy production predictions. Accurate energy production 
forecasting from renewable sources ensures better grid 
integration and reduces the fluctuations' impact. Solar power 

 

Biosystems Engineering and Renewable Energies 
 

Journal homepage: https://bere.gau.ac.ir   

  

   
 ISAMEM      

© Published by Gorgan University of Agricultural Sciences and Natural Resources. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-ncnd/4.0/).

https://doi.org/10.22069/bere.2025.23125.1014

https://bere.gau.ac.ir/


  Biosystems Engineering and Renewable Energies 2025, 1 (1): 70-74 

 

71 
 

producers can achieve greater efficiency through precise 
forecasting  (Bright et al., 2019). 

Recent solar power forecasting studies have focused on 
developing advanced machine learning and deep learning models 
to improve prediction accuracy and reliability. According to 
Ahmed et al. (2024), a hybrid model incorporating support 
vector regression (SVR), random forest regression (RFR), 
gradient boosting regression (GBR), and multivariate adaptive 
regression splines (MARS) was developed for solar power 
prediction. The results showed that the hybrid-MARS model 
outperformed standalone models, with the MARS-SVR model 
demonstrating the highest reliability. In research by Tahir et al. 
(2024), Bayesian optimization and random search methods were 
utilized to enhance machine learning models such as artificial 
neural networks (ANN) and Gaussian process regression (GPR). 
This study highlighted the importance of hyperparameter 
optimization in improving model accuracy. Sulaiman et al. (2024) 
explored short-term solar power forecasting for rooftop systems, 
finding that the ANN model, outperformed other models such as 
long short-term memory (LSTM) and gated recurrent unit (GRU), 
leveraging data-driven features. According to Syauqi et al. 
(2024), combining physical and machine-learning models 
improved performance under both data-scarce and standard 
conditions. This model achieved increased prediction accuracy 
across diverse scenarios. Rao et al. (2024) utilized parallel 
BiLSTM networks combined with DNN to enhance prediction 
accuracy significantly. This approach achieved satisfactory 
results by mitigating errors associated with data quality. The 
hybrid model proposed by Zhao et al. (2024) integrated the 
whale optimization algorithm, variational mode decomposition, 
and SCINet, improving short-term solar power prediction 
performance under seasonal and variable conditions. Wang et al. 
(2024) developed a seasonal grey prediction model considering 
time lag and interactive effects, increasing forecasting accuracy 
compared to baseline models. According to Zhang et al. (2024), a 
deep reinforcement learning-based framework for solar power 
prediction reduced errors and enhanced model interpretability 
through key feature analysis. 

Solar power forecasting faces several critical challenges. First, 
most existing studies primarily focus on large-scale PV plants, 
often overlooking the unique challenges associated with small, 
distributed solar systems (Jamil et al., 2023). These decentralized 
systems are more susceptible to local environmental variations 
and require more adaptive forecasting models. Second, many 
conventional approaches rely solely on either historical energy 
production data or meteorological variables, limiting their 
adaptability to dynamic climate conditions (Alaraj et al., 2021). 
This reliance reduces the robustness of predictions, especially in 
regions with highly variable weather patterns. Additionally, 
commonly used models such as ANNs, despite their widespread 
adoption, often suffer from computational inefficiencies and 
struggle to generalize across different seasonal variations (Wan 
et al., 2024). Given the high sensitivity of solar power generation 
to environmental factors, models that fail to explicitly 
incorporate seasonal dependencies may lack the accuracy 
required for short-term predictions. 

To address these limitations, this study introduces a hybrid 
approach based on the LightGBM, a GBR model known for its 
high computational efficiency and predictive accuracy. Unlike 
traditional methods, the proposed model integrates both 
historical energy production data and meteorological variables, 
enhancing the adaptability of predictions under varying weather 
conditions. This study specifically focuses on 300 small-scale 
residential PV plants during the summer season, providing a 
comprehensive analysis of seasonal variations in energy 
generation. Furthermore, by optimizing feature selection and 
leveraging the scalability of LightGBR, the proposed approach 
improves model generalization while reducing computational 
costs. The findings of this research contribute to enhancing 
forecasting accuracy, integrating predictive models with smart 

grids, and optimizing solar energy management strategies, 
ultimately promoting the efficient utilization of solar resources in 
residential-scale applications. In this research, we will explore 
various machine learning algorithms based on meteorological 
data and solar panel production capacity to develop an optimal 
model for accurately predicting energy production while 
considering environmental changes. A comparative analysis of 
different regression algorithms, including LightGBR, SVR, and 
ensemble methods such as RFR, will be conducted to evaluate 
their performance and accuracy. Given the rapid expansion of PV 
technologies and the significance of precise energy forecasting 
for smart grids and energy distribution systems, the findings of 
this study could enhance operational decision-making in energy 
management and improve the efficiency of PV systems. 
Ultimately, this research aims to develop an intelligent model 
that not only ensures high accuracy in PV energy forecasting but 
also adapts to diverse environmental and climatic variations. 

 
2. Materials and Methods 
 

The data used in this study was extracted from the official 
IPART website. This dataset contains real-world PV energy 
production data. For the necessary analyses, the data for PV 
energy production during the summer was separated using the 
Pandas and NumPy libraries, and then the data was converted to 
daily values. Subsequently, the meteorological data for this 
period was integrated into the main dataset, obtained from 
Visual Crossing (VC), a specialized weather data and forecasting 
platform. 

 
2.1. Dataset mapping 

This study analyzed hourly data from a single season of PV 
energy production from 300 home PV power plants in Sydney. 
The PV systems used in this study consist of residential rooftop 
solar panels with varying generator capacities. The dataset was 
converted to daily data using the Pandas and NumPy libraries in 
Python. Additionally, meteorological data, including temperature, 
precipitation, cloud cover, solar radiation, solar energy, and UV 
index, corresponding to the recorded production dates, were 
incorporated into the dataset. 

 
2.2. Methodology 

The methodology of this study follows a structured process, 
as illustrated in Figure 1. The workflow begins with the collection 
of initial datasets, followed by data mapping and integration with 
meteorological data to incorporate relevant environmental 
factors. Next, data preprocessing is performed to normalize and 
clean the dataset. Various machine learning algorithms are then 
applied to predict PV energy generation. Finally, the best-
performing algorithm is selected based on accuracy and error 
analysis, leading to the final modeling phase. Figure 1 visually 
represents the step-by-step procedure followed in this research. 

 
Figure 1. Steps of the PV energy production forecasting model 
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2.3. Data preprocessing 
This study used the StandardScaler for data preprocessing, a 

common method for scaling data. This tool, available in the Scikit-
Learn library in Python, transforms the data so that the mean of 
each feature is shifted to zero, and its variance is scaled to one. 
The criteria used in this method are the mean and standard 
deviation, such that the mean of each feature becomes zero and 
its standard deviation equals one (Sharma, 2022). The 
standardization formula is as Eq. (1) 

𝑧 = ((x − μ))/𝜎                                                                                          (1)                     

where x is the original data value, μ is the mean, and σ is the 
standard deviation. After the standardization process, the 
machine learning models were trained with the preprocessed 
data. This process enhances the final model's performance and 
results in better predictions. 

 
2.4. Application of machine learning algorithms 

In this study, three machine learning algorithms, i.e., SVR, 
RFR, and LightGBR, were used for forecasting PV energy 
production. RFR is an ensemble learning algorithm that combines 
multiple decision trees to make a final prediction. Each decision 
tree is independently trained on random data samples, and its 
predictions are combined using majority voting. The decision 
trees form the base of the RFR, which uses ensemble learning 
techniques to improve accuracy and reduce the likelihood of 
overfitting (Smith et al., 2013). Key parameters for the RFR 
include: the number of trees (n_estimators), maximum depth 
(max_depth), and minimum number of samples required to split 
a node (min_samples_split). 

The SVR utilizes the concept of support vectors to solve 
regression problems. It aims to find a function with the least 
error within a defined margin while minimizing the model's 
complexity. Its objective is to find a function that maximizes the 
margin between the support vectors and the data points outside 
the margin (Das et al., 2017). Key parameters for the SVR include: 
the regularization parameter that controls the trade-off between 
error tolerance and model complexity (C), kernel type that 
transforms data into a feature space, and epsilon (ε), which is the 
maximum error allowed within the margin. Common kernel 
types include linear, polynomial, radial basis function (RBF), and 
sigmoid. 

LightGBR is a boosting algorithm based on decision trees, 
known for its high speed and accuracy. The algorithm 
incrementally improves decision trees using boosting techniques. 
LightGBR uses boosting techniques to refine base models and 
utilizes decision tree optimization methods, resulting in high 
speed and accuracy. It is particularly popular due to its efficiency 
in processing large and complex datasets (Fan et al., 2019). Key 
parameters for the LightGBR algorithm include: the number of 
boosting iterations (n_estimators), learning rate (learning_rate), 
and maximum number of leaves each tree can have (num_leaves). 

The following ranges of parameters were tested for each 
model. For the RFR: n_estimators: [50, 100, 150, 200], 
max_depth: [5, 10, 15, 20], and min_samples_split: [2, 5, 10, 20], 
for the SVR: C: [0.1, 1, 10], kernel type: [‘linear’, ‘poly’, ‘rbf’], and 
epsilon: [0.01, 0.1, 0.2], and for LightGBR: n_estimators: [50, 100, 
200, 300], learning_rate: [0.05, 0.1, 0.2], and num_leaves: [10, 15, 
20, 25]. Grid search with cross-validation was used to optimize 
the model parameters.   

 
2.5. Evaluation criteria 

To assess the performance of the forecasting models, as well 
as in grid search to find optimal machines, three common 
evaluation metrics were used: mean squared error (MSE), mean 
absolute error (MAE), and the coefficient of determination (R²). 
These metrics provide insights into the accuracy and reliability of 
the predictions by quantifying the error between predicted and 

actual values. MSE measures the average squared difference 
between actual and predicted values. A lower MSE value 
indicates better model performance, as it penalizes larger errors 
more significantly. It is defined as Eq. (2) 

 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1                                                                         (2)                                             

 
where 𝑦̂  represents the actual values,  𝑦̂𝑖  is the predicted value, 
and n is the total number of observations. MAE calculates the 
average absolute difference between actual and predicted values. 
Unlike MSE, it does not square the errors, making it less sensitive 
to outliers. It is defined as Eq. (3). 
 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑖 −  𝑦̂𝑖|𝑛

𝑖=1                                                                           (3)                                       

 
Lower MAE values indicate a model with fewer overall prediction 
errors. The R² measures the proportion of variance in the actual 
values that the model explains. It ranges from negative values 
(poor model performance) to 1 (perfect prediction). It is defined 
as Eq. (4) 

𝑅2 =  1 −
∑ (𝑦𝑖− 𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

                                                                               (4)                                                                                

where 𝑦̅ represents the mean of the actual values. A higher R² 
score indicates a better fit between the model and the data. To 
select the best algorithm and optimize parameters, the 'joblib' 
library was used to store the optimal models. 

3. Results and Discussion 
 

In this study, by adjusting various parameters in the machine 
learning algorithms and comparing their performance, the model 
with the highest accuracy and the lowest error was selected for 
each algorithm and subsequently compared with other 
algorithms. As shown in  Table 1, the optimal values of the 
maximum depth of the tree, the minimum samples for splitting, 
and the number of trees for the RFR model are 10, 2, 100, 
respectively. Upon training the model and applying it for 
predictions, it is observed that, as depicted in  Figure 2, the 
comparison chart between the predicted and actual data aligns 
well with the trend line (y = x). This alignment indicates the 
model's high accuracy in forecasting values. However, the 
dispersion of some points from the trend line suggests the 
presence of some error in the predictions, which could be 
improved through alternative methods. 

According to Table 2, the optimal values of regularization 
parameter, the maximum allowable error, and the kernel type for 
the SVR model were determined to be 10, 0.01, and ‘rbf’, 
respectively. After training the model and predicting the values, 
the comparison chart in Figure 3 displays the real and predicted 
data. Although the predicted values are close to the trend line (y 
= x) in most cases, indicating the model's accuracy, the greater 
dispersion of points compared to the Random Forest regression 
model suggests a relatively weaker performance of this model. 

As shown in Table 3, the optimal values for learning rate, the 
number of boosting iterations, and the maximum number of leaves 
for the LightGBR were identified as 0.1, 200, 15, respectively. 
After training the model and predicting the values, the 
comparison chart in Figure 4 shows the real and predicted data. 
Unlike the previous models, the predicted values in this model 
are more consistently aligned with the trend line (y = x), 
indicating higher accuracy and lower error. This better alignment 
suggests that the LightGBR outperforms the SVR and RFR models, 
providing more accurate prediction results. 

For PV energy production modeling and prediction, the joblib 
library was used, and the LightGBR model was identified as the 
superior model. Future PV energy production can be predicted 
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and controlled using meteorological data, including production 
capacity, temperature, precipitation, cloud cover, solar radiation, 
solar energy, UV index, and production capacity data. This 
approach facilitates the management and optimization of solar 
energy production, significantly improving prediction accuracy 
and error reduction in this field. Thus, this model can be utilized 
to enhance the efficiency of solar energy production systems and 
optimize energy resources. 

 
Table 1. Results of the RFR model 

R2 MAE MSE Parameters 

0.8933 3.4441 1.1383 MD=10, MSS=2, NE=100 * 

0.8754 4.1025 1.2307 MD=5, MSS=5, NE=50  

0.8841 3.8123 1.2024 MD=15, MSS=20, NE=150  

0.8789 3.9502 1.2156 MD=20, MSS=10, NE=200  

* MD represents the maximum depth of the tree, MSS stands for the 
minimum samples for splitting, and NE refers to the number of trees. 

 

 
Figure 2. Comparison between actual and predicted data using the RFR 

Table 2. Results of the SVR model 
R2 MAE MSE Parameters 

0.8553 4.6715 1.2477 C=10, E=0.01, K=rbf * 

0.8123 5.4012 1.3085 C=1, E=0.1, K=rbf 

0.7431 4.9204 1.2689 C=0.1, E=0.2, K=poly 

0.8262 4.8950 1.2593 C=0.1, E=0.01, K=rbf 

* C represents the regularization parameter, E stands for the maximum 

allowable error, and K refers to the kernel type. 

 
Figure 3. Comparison between actual and predicted data using the SVR 

Table 3. Results of the LightGBR model 
R2 MAE MSE Parameters 

0.9020 3.1621 0.1005 LR=0.1, NE=200, NL=15 * 
0.8874 3.5567 0.8874 LR=0.05, NE=100, NL=10 

0.8948 3.4015 1.1453 LR=0.2, NE=300, NL=25 

0.8992 3.3044 1.1302 LR=0.1, NE=50, NL=20 

* LR represents the learning rate, NE stands for the number of boosting 

iterations, and NL refers to the maximum number of leaves. 

 
Figure 4. Comparison between actual and predicted data using the 
LightGBR 

 

Table 4 presents a summary of previous studies on energy 
consumption forecasting using various machine learning models. 
The table includes different models along with their forecasting 
errors, allowing for a comparative assessment of their 
performance. Lima et al. employed an ANN for energy 
consumption forecasting. Their results indicated that the model 
achieved an MSE of 20.95, an RMSE of 29.48, and an R² of 0.88. 
While this model provided reasonably accurate predictions, the 
error values remained relatively high. Olatomiwa et al. utilized 
the SVM for energy consumption forecasting. Their evaluation 
showed an RMSE of 1.8661 and an R² of 0.7280. Although the 
model demonstrated a fair level of accuracy, the relatively low R² 
value suggests limitations in capturing the variability of actual 
data. Amrouche et al. applied a combination of spatial modeling 
and ANNs to forecast energy consumption. Their study reported 
an MSE of 16.4593 and an RMSE of 33.10. While the 
incorporation of neural networks enhanced predictive 
performance, the relatively high RMSE indicates that the model 
exhibited lower accuracy in certain instances. Javier Huertas Tato 
et al. employed the RFR algorithm for energy consumption 
forecasting. The model’s performance was assessed with an R² of 
0.752 and an RMSE of 26.94. These results suggest that RF 
provided a moderate level of accuracy, though the RMSE remains 
relatively high. Christophe Paoli et al. implemented a multilayer 
perceptron (MLP) ANN for energy consumption forecasting. 
Their findings indicated an R² of 0.801, an RMSE of 3.59, and an 
MAE of 2.65. These results suggest that the MLP model 
performed well compared to some other approaches, yet further 
optimization could potentially reduce prediction errors. 
 
Table 4. Comparison of energy production forecasting models based on 
error metrics 
Reference Model Forecasting error 
Lima et al. ANN MSE = 20.95, RMSE = 29.48, 

and R2 = 0.88 

Olatomiwa 
et al. 

Support Vector 
Machine 

RMSE = 1.8661, R2  = 0.7280 

Amrouche 
et al. 

Spatial modeling 
and Artificial 
Neural Networks 

MSE = 16.4593, RMSE = 33.10 

Javier Huertas Tato 
 

RF R2  = 0.752, and RMSE = 26.94 

Paoli et al. MLP R2  = 0.801, RMSE = 3.59, and 
MAE = 2.65 

This work LighGBR R2  = 0.902, MSE = 0.101, and 
MAE = 3.162 
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4. Conclusion 
 

This study focused on predicting PV energy production using 
machine learning models, incorporating weather data and the 
production capacity of residential solar systems. The results 
show that among the tested models, LightGBR performed the 
best, achieving an R² of 0.9020, MAE of 3.1621, and MSE of 
0.1005, making it a highly effective method for solar energy 
forecasting. These findings are important for renewable energy 

management, optimizing energy distribution, and integrating 
smart grids, as accurate predictions can improve grid stability, 
reduce energy waste, and enhance decision-making in energy 
markets. Additionally, this research supports sustainability goals 
and contributes to the efficient utilization of solar resources. 
Future studies are recommended to explore deep learning 
models and more comprehensive meteorological datasets to 
further improve forecasting accuracy. 
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